
Corrigé de la Feuille d’exercices n°3 – Polynome et
Arithmetique

Année 2025-26

Exercice 1
Exercice 12 Soient A = X7 − X − 1 et B = X5 − 1. Trouver deux polynomes

U, V ∈ R[X] tels que AU + BV = 1.

Solution

Étape 1 : Application de l’algorithme d’Euclide pour le PGCD
L’algorithme d’Euclide effectue des divisions polynomiales successives jusqu’à ce
que le reste soit constant. Notez que deg(A) = 7 et deg(B) = 5.
Étape 1.1 : Division de A par B

A = X7 − X − 1
B = X5 − 1

Quotient Q1 = X2 (car X7/X5 = X2).

X2 · B = X2(X5 − 1) = X7 − X2

Reste R1 = A − Q1B = (X7 − X − 1) − (X7 − X2) = X2 − X − 1.

R1 = X2 − X − 1 (degré 2)

Étape 1.2 : Division de B par R1

B = X5 − 1
R1 = X2 − X − 1

Nous effectuons la division polynomiale longue (Ou vous pouvez utiliser la division
longue comme nous l’avons fait en classe, c’était juste pour que ce soit plus pratique
à taper) :

— Étape 1 : X5/X2 = X3.
X3 · R1 = X3(X2 − X − 1) = X5 − X4 − X3.
Reste temp. : B − X3R1 = (X5 − 1) − (X5 − X4 − X3) = X4 + X3 − 1 (degré
4).

— Étape 2 (degré 4 ≥ 2) : X4/X2 = X2.
X2 · R1 = X2(X2 − X − 1) = X4 − X3 − X2.
Reste temp. : (X4 + X3 − 1) − (X4 − X3 − X2) = 2X3 + X2 − 1 (degré 3).
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— Étape 3 (degré 3 ≥ 2) : 2X3/X2 = 2X.
2X · R1 = 2X(X2 − X − 1) = 2X3 − 2X2 − 2X.
Reste temp. : (2X3 + X2 − 1) − (2X3 − 2X2 − 2X) = 3X2 + 2X − 1 (degré
2).

— Étape 4 (degré 2 = 2) : 3X2/X2 = 3.
3 · R1 = 3(X2 − X − 1) = 3X2 − 3X − 3.
Reste R2 = (3X2 + 2X − 1) − (3X2 − 3X − 3) = 5X + 2 (degré 1).

Quotient Q2 = X3 + X2 + 2X + 3.

R2 = 5X + 2

Étape 1.3 : Division de R1 par R2

R1 = X2 − X − 1
R2 = 5X + 2

Division polynomiale (degré 2 ÷ degré 1) :
— Étape 1 : X2/(5X) = 1

5X.
1
5X · R2 = 1

5X(5X + 2) = X2 + 2
5X.

Reste temp. : (X2 − X − 1) − (X2 + 2
5X) = −X − 2

5X − 1 = −7
5X − 1 (degré

1).
— Étape 2 (degré 1 = 1) : (−7

5X)/(5X) = −7/5
5 = − 7

25 .
− 7

25 · R2 = − 7
25(5X + 2) = −35

25X − 14
25 = −7

5X − 14
25 .

Reste R3 = (−7
5X − 1) − (−7

5X − 14
25) = −1 + 14

25 = −25
25 + 14

25 = −11
25 .

Quotient Q3 = 1
5X − 7

25 .

R3 = −11
25 (constante, degré 0)

Étape 1.4 : Condition d’arrêt Le reste R3 est une constante non nulle (−11
25),

donc le PGCD(A, B) est une constante (A et B sont premiers entre eux). Nous
pouvons continuer avec la partie étendue pour trouver U et V.
Étape 2 : Partie étendue (Remontée pour U et V)
Maintenant, nous remontons pour exprimer R3 comme une combinaison linéaire de
A et B : R3 = AU ′ + BV ′. Ensuite, comme nous voulons = 1, et que R3 = −11

25 ,
nous aurons U = U ′ · (−25

11) et V = V ′ · (−25
11).

Étape 2.1 : Partir de R3 = R1 − Q3R2

R3 = R1 − Q3R2

Étape 2.2 : Substituer R2 = B − Q2R1

R3 = R1 − Q3(B − Q2R1)
= R1 − Q3B + Q3Q2R1

= (1 + Q3Q2)R1 − Q3B

Étape 2.3 : Substituer R1 = A − Q1B

R3 = (1 + Q3Q2)(A − Q1B) − Q3B

= (1 + Q3Q2)A − (1 + Q3Q2)Q1B − Q3B

= (1 + Q3Q2)A − [(1 + Q3Q2)Q1 + Q3]B
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Donc :

U ′ = 1 + Q3Q2

V ′ = −[(1 + Q3Q2)Q1 + Q3]

Étape 2.4 : Calculer Q3Q2

Q3 = 1
5X − 7

25
Q2 = X3 + X2 + 2X + 3

— 1
5X · Q2 = 1

5(X4 + X3 + 2X2 + 3X) = 1
5X4 + 1

5X3 + 2
5X2 + 3

5X
— − 7

25 · Q2 = − 7
25X3 − 7

25X2 − 14
25X − 21

25
En combinant (dénominateur commun 25) :

— X4 : 5
25

— X3 : 5
25 − 7

25 = − 2
25

— X2 : 10
25 − 7

25 = 3
25

— X : 15
25 − 14

25 = 1
25

— Constante : −21
25

Q3Q2 = 5
25X4 − 2

25X3 + 3
25X2 + 1

25X − 21
25

Étape 2.5 : Calculer U ′ = 1+Q3Q2 1 = 25
25 . Le terme constant devient : 25

25 − 21
25 =

4
25 .

U ′ = 5
25X4 − 2

25X3 + 3
25X2 + 1

25X + 4
25

Ou écrit :
U ′ = 1

25(5X4 − 2X3 + 3X2 + X + 4)

Étape 2.6 : Calculer V ′ Rappel : V ′ = −[U ′Q1 + Q3].
— D’abord, U ′Q1 = U ′ · X2 = 1

25(5X6 − 2X5 + 3X4 + X3 + 4X2).
— Ajoutons Q3 = 1

5X − 7
25 = 5

25X − 7
25 .

— La somme [U ′Q1 + Q3] est :
5
25X6 − 2

25X5 + 3
25X4 + 1

25X3 + 4
25X2 + 5

25X − 7
25 .

Donc V ′ = −[Somme] :

V ′ = 1
25(−5X6 + 2X5 − 3X4 − X3 − 4X2 − 5X + 7)

Étape 2.7 : Mise à l’échelle pour obtenir = 1 Nous avons R3 = −11
25 =

AU ′ + BV ′. Pour obtenir 1, nous multiplions tout par (−25
11) :

1 = A
(

U ′ ·
(

−25
11

))
+ B

(
V ′ ·

(
−25

11

))
Calculons U et V :

U = U ′ ·
(

−25
11

)
=
[ 1
25(5X4 − 2X3 + 3X2 + X + 4)

]
·
(

−25
11

)
= − 1

11(5X4 − 2X3 + 3X2 + X + 4)
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V = V ′ ·
(

−25
11

)
=
[ 1
25(−5X6 + 2X5 − 3X4 − X3 − 4X2 − 5X + 7)

]
·
(

−25
11

)
= 1

11(5X6 − 2X5 + 3X4 + X3 + 4X2 + 5X − 7)

Résultat final
U = − 1

11(5X4 − 2X3 + 3X2 + X + 4)

V = 1
11(5X6 − 2X5 + 3X4 + X3 + 4X2 + 5X − 7)

Vérification et remarques
— Vous pouvez utiliser un logiciel de calcul formel (comme Mathematica ou

Sage) pour vérifier si AU + BV est bien égal à 1.
— Remarque : U et V ne sont pas uniques. Toute solution de la forme U ′ =

U + BK et V ′ = V − AK (où K est un polynôme quelconque) est également
une solution. La solution trouvée est celle de degré minimal (pour U).

Exercice 2
Exercice 22 Soit P un polynome de R[X] tel que P (x) ≥ 0 pour tout x ∈ R. On
cherche à montrer qu’il existe S, T ∈ R[X] tels que P = S2 + T 2.

1. Verifier l’identite remarquable (a2 + b2)(c2 + d2) = (ac + bd)2 + (bc − ad)2.
2. Resoudre le problème pour P de degre 2.
3. Conclure.

Solution

1. On developpe le membre de droite de l’identite [9, 10, 11, 12] :
(ac + bd)2 + (bc − ad)2 = (a2c2 + 2abcd + b2d2) + (b2c2 − 2abcd + a2d2)

= a2c2 + b2d2 + b2c2 + a2d2

= a2(c2 + d2) + b2(d2 + c2)
= (a2 + b2)(c2 + d2)

L’identite est verifiee. Elle montre que l’ensemble des polynomes qui sont des
sommes de deux carres est stable par multiplication.

2. Soit P (X) = aX2 + bX + c ∈ R[X] tel que P (x) ≥ 0 pour tout x ∈ R. Pour
que P (x) reste positif lorsque x → ±∞, le coefficient dominant a doit être
positif. Si a = 0, P (X) = bX + c. Pour que P (x) ≥ 0 pour tout x, il faut
b = 0 et c ≥ 0. Alors P (X) = c = (

√
c)2 + 02. S =

√
c et T = 0. Si a > 0,

pour que P (x) ≥ 0 pour tout x, le polynome ne peut pas avoir deux racines
reelles distinctes, sinon il changerait de signe. Son discriminant ∆ = b2 −4ac
doit être negatif ou nul (∆ ≤ 0).[13, 14] On met P sous forme canonique
(completion du carre) :

P (X) = a

(
X2 + b

a
X + c

a

)
= a

(X + b

2a

)2

+ c

a
− b2

4a2


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P (X) = a

(
X + b

2a

)2

+ 4ac − b2

4a

Puisque a > 0 et ∆ = b2 − 4ac ≤ 0, le terme 4ac − b2 ≥ 0. On peut donc
poser : S(X) =

√
a
(
X + b

2a

)
∈ R[X] T (X) =

√
4ac−b2

4a
∈ R (polynome

constant) On a bien P (X) = S(X)2 + T (X)2.
3. Soit P ∈ R[X] tel que P (x) ≥ 0. On utilise la decomposition en facteurs

irreductibles dans R[X] [2, 14, 15] :

P (X) = λ ·
∏

i

(X − ri)αi ·
∏
j

(X2 + ajX + bj)βj

où les ri sont les racines reelles, et les X2 + ajX + bj sont les facteurs irre-
ductibles de degre 2 (avec ∆j < 0).
— Coefficient dominant λ : Puisque P (x) ≥ 0, on doit avoir λ > 0. On

peut ecrire λ = (
√

λ)2 + 02. C’est une somme de deux carres.
— Racines reelles ri : Si une multiplicite αi etait impaire, P (x) changerait

de signe en ri, ce qui contredit P (x) ≥ 0. Donc, toutes les αi sont paires.
Posons αi = 2ki. Le facteur (X − ri)αi = (X − ri)2ki =

[
(X − ri)ki

]2
+ 02.

C’est une somme de deux carres.
— Facteurs de degre 2 : Pour Qj(X) = X2 + ajX + bj, on a ∆j < 0.

Comme son coefficient dominant (1) est positif, Qj(x) > 0 pour tout
x ∈ R. D’après la question 2, Qj(X) peut s’ecrire Sj(X)2 + Tj(X)2. Les
facteurs (Qj(X))βj = (S2

j + T 2
j )βj sont aussi des sommes de deux carres

(par recurrence en utilisant l’identite de la question 1).
P (X) est un produit de termes qui sont tous des sommes de deux carres. En
appliquant l’identite de la question 1 de manière repetee (par recurrence), le
produit final P (X) est lui-même une somme de deux carres S2 + T 2.

Exercice 3
Exercices 24 Determiner toutes les valeurs de a ∈ C telles que le polynome P =
X3 + X2 + aX + 6 admet deux racines b et c verifiant b + c = bc. Determiner alors
toutes les racines du polynome.

Solution

Soit d la troisième racine de P . P est de degre 3. On utilise les relations entre les
coefficients et les racines (formules de Viète) [16] : (1) b + c + d = −1 (coefficient
de X2) (2) bc + bd + cd = a (coefficient de X1) (3) bcd = −6 (coefficient de X0)
On ajoute la condition de l’enonce : (4) b + c = bc
Posons K = b + c = bc. D’après (3), bcd = (bc)d = K · d = −6. D’après (1),
(b + c) + d = K + d = −1. Nous avons un système de deux equations pour K et d :
(A) K · d = −6 (B) K + d = −1 =⇒ d = −1 − K
On substitue (B) dans (A) : K(−1 − K) = −6 −K − K2 = −6 K2 + K − 6 = 0
On factorise cette equation du second degre en K : (K − 2)(K + 3) = 0 Les deux
valeurs possibles pour K sont K = 2 et K = −3.
Cas 1 : K = 2.

— b + c = 2 et bc = 2.
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— b et c sont les racines de l’equation Z2−(b+c)Z+bc = 0, soit Z2−2Z+2 = 0.
— ∆ = (−2)2 − 4(1)(2) = 4 − 8 = −4 = (2i)2.
— b, c = 2±2i

2 = {1 + i, 1 − i}.
— La troisième racine est d = −1 − K = −1 − 2 = −3.
— Les racines sont {−3, 1 + i, 1 − i}.
— On calcule a avec la relation (2) : a = bc+bd+cd = bc+d(b+c) = K+d(K) =

2 + (−3)(2) = 2 − 6 = −4.
Cas 2 : K = −3.

— b + c = −3 et bc = −3.
— b et c sont les racines de Z2 − (−3)Z + (−3) = 0, soit Z2 + 3Z − 3 = 0.
— ∆ = 32 − 4(1)(−3) = 9 + 12 = 21.
— b, c = {−3+

√
21

2 , −3−
√

21
2 }.

— La troisième racine est d = −1 − K = −1 − (−3) = 2.
— Les racines sont {2, −3+

√
21

2 , −3−
√

21
2 }.

— On calcule a : a = bc + d(b + c) = K + d(K) = −3 + (2)(−3) = −3 − 6 = −9.
Les deux valeurs possibles pour a sont a = −4 et a = −9.

Exercice 4
Exercice 25 1. Soit P = 1 − X + X2 − X3. Factoriser ce polynome dans R[X] et
C[X]. 2. Soit P = 1 − X + X2 + · · · + (−1)nXn = ∑n

k=0(−1)kXk. Determiner les
racines de P dans R et dans C.

Solution

1. P = 1 − X + X2 − X3. On regroupe les termes : P = (1 − X) + (X2 − X3) =
(1 − X) + X2(1 − X) P = (1 − X)(1 + X2)
Dans R[X] : Le facteur X2 + 1 a un discriminant ∆ = −4 < 0, il est donc
irreductible sur R.[2] La decomposition est P = (1 − X)(X2 + 1). (Ou −(X −
1)(X2 + 1)).
Dans C[X] : Le facteur X2 + 1 se decompose en X2 − (i2) = (X − i)(X + i).[2] La
decomposition est P = (1 − X)(X − i)(X + i).
2. Soit P = ∑n

k=0(−1)kXk = ∑n
k=0(−X)k. Il s’agit de la somme d’une serie geome-

trique de raison r = −X.[17] La formule de la somme est P (X) = 1−rn+1

1−r
.

P (X) = 1 − (−X)n+1

1 − (−X) = 1 − (−1)n+1Xn+1

1 + X

On doit d’abord verifier le cas où le denominateur est nul, X = −1 :

P (−1) =
n∑

k=0
(−1)k(−1)k =

n∑
k=0

(−1)2k =
n∑

k=0
1 = n + 1

Puisque n ≥ 0 (implicitement, pour avoir au moins 1 − X), P (−1) ̸= 0. Donc
X = −1 n’est jamais racine. Les racines de P sont les X ̸= −1 qui annulent le
numerateur :

1 − (−1)n+1Xn+1 = 0 ⇐⇒ Xn+1 = 1
(−1)n+1 = (−1)−(n+1) = (−1)n+1

(Car k et −k ont la même parite).
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On distingue deux cas selon la parite de n :
Cas 1 : n est impair. Alors n+1 est pair. L’equation devient Xn+1 = (−1)pair = 1.
Les racines sont les (n + 1)-ièmes racines de l’unite, xk = exp

(
i 2kπ

n+1

)
pour k ∈

{0, . . . , n}. Nous devons exclure X = −1. X = −1 est une racine de l’unite car
n + 1 est pair ; elle correspond à k = (n + 1)/2.

— Racines dans C :
{
exp

(
i 2kπ

n+1

)
| k ∈ {0, . . . , n} \ {(n + 1)/2}

}
.

— Racines dans R : Les racines reelles de Xn+1 = 1 (avec n + 1 pair) sont
1 (pour k = 0) et −1 (pour k = (n + 1)/2). Puisqu’on exclut −1, la seule
racine reelle est X = 1.

Cas 2 : n est pair. Alors n+1 est impair. L’equation devient Xn+1 = (−1)impair =
−1. Les racines sont les (n + 1)-ièmes racines de −1, xk = exp

(
iπ+2kπ

n+1

)
pour k ∈

{0, . . . , n}. Nous devons exclure X = −1. X = −1 = eiπ est une racine de Xn+1 =
−1 car n + 1 est impair ; elle correspond à k = n/2.

— Racines dans C :
{
exp

(
iπ(1+2k)

n+1

)
| k ∈ {0, . . . , n} \ {n/2}

}
.

— Racines dans R : La seule racine reelle de Xn+1 = −1 (avec n + 1 impair)
est X = −1. Puisqu’on exclut cette valeur, il n’y a aucune racine reelle.

Exercice 5
Exercice 28 Soit le polynome P = X8 +2X6 +3X4 +2X2 +1. 1. Montrer que j est
racine de ce polynome. Determiner son ordre de multiplicite. 2. Quelle consequence
peut-on tirer de la parite de P ? 3. Decomposer P en facteurs irreductibles dans
C[X] et dans R[X].

Solution

1. Racine j : On remarque que P est un polynome en X2. Posons Y = X2.
Q(Y ) = Y 4 +2Y 3 +3Y 2 +2Y +1. On reconnaît une identite remarquable (polynome
reciproque) : Q(Y ) = (Y 2 + Y + 1)2. Donc, P (X) = (X4 + X2 + 1)2. Soit R(X) =
X4+X2+1. On a P (X) = R(X)2. Le nombre j = ei2π/3 est une racine de X2+X+1.
On a donc j2 + j + 1 = 0 et j3 = 1.[8, 2] Calculons R(j) : R(j) = j4 + j2 + 1 =
(j3)j + j2 + 1 = 1 · j + j2 + 1 = j + j2 + 1 = 0. Puisque P (j) = (R(j))2, on a
P (j) = 02 = 0. j est bien racine de P .
Multiplicite : On utilise la caracterisation par les derivees successives.[2] P (j) = 0.
P ′(X) = 2R(X)R′(X). P ′(j) = 2R(j)R′(j) = 2 · (0) · R′(j) = 0. La multiplicite est
au moins 2. P ′′(X) = 2(R′(X))2 +2R(X)R′′(X). P ′′(j) = 2(R′(j))2 +2R(j)R′′(j) =
2(R′(j))2 + 0. Calculons R′(X) = 4X3 + 2X. R′(j) = 4j3 + 2j = 4(1) + 2j = 4 + 2j.
Puisque j /∈ R, R′(j) ̸= 0. Donc P ′′(j) = 2(4 + 2j)2 ̸= 0. P (j) = 0, P ′(j) = 0 et
P ′′(j) ̸= 0. L’ordre de multiplicite de j est exactement 2.
2. Parite : P (X) ne contient que des puissances paires de X. P (−X) = (−X)8 +
2(−X)6 + · · · + 1 = X8 + 2X6 + · · · + 1 = P (X). P est un polynome pair. Conse-
quence : Si r est une racine de P de multiplicite m, alors −r est aussi une racine
de P avec la même multiplicite m. (En effet, si j est racine de multiplicite 2, j2

(son conjugue, car P est reel) est aussi racine de multiplicite 2. Par parite, −j et
−j2 sont aussi des racines de multiplicite 2).
3. Decomposition : On part de P (X) = (X4 + X2 + 1)2. On factorise R(X) =
X4 + X2 + 1 en utilisant l’astuce de la completion du carre : R(X) = (X4 + 2X2 +
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1)−X2 = (X2 +1)2 −X2 C’est une difference de carres A2 −B2 = (A−B)(A+B) :
R(X) = (X2 + 1 − X)(X2 + 1 + X) = (X2 − X + 1)(X2 + X + 1).
Dans R[X] : P (X) = (R(X))2 = [(X2 − X + 1)(X2 + X + 1)]2

P (X) = (X2 − X + 1)2(X2 + X + 1)2

Les polynomes X2−X+1 (∆ = 1−4 = −3 < 0) et X2+X+1 (∆ = 1−4 = −3 < 0)
sont irreductibles sur R.[2] C’est la decomposition en irreductibles de P dans R[X].
Dans C[X] : On decompose les facteurs de degre 2 :

— X2 + X + 1 = (X − j)(X − j2)
— X2 − X + 1. Les racines sont 1±

√
1−4

2 = 1±i
√

3
2 . Ces racines sont eiπ/3 = −j2

et e−iπ/3 = −j.[8] X2 − X + 1 = (X − (−j2))(X − (−j)) = (X + j2)(X + j).
On reporte dans P (X) = (R(X))2 :

P (X) =
[
(X − j)(X − j2)(X + j)(X + j2)

]2
P (X) = (X − j)2(X − j2)2(X + j)2(X + j2)2

C’est la decomposition en irreductibles de P dans C[X].

Exercice 6
Exercice 30 Décomposer en éléments simples les fractions rationnelles suivantes
(sur R et C) :

4. F4(X) = X6

X5 − X
.

5. F5(X) = X6 + 1
X5 − X4 + X3 − X2 + X − 1

6. F6(X) = 1
Xn − 1 où n ∈ N∗

Solution

4. Soit F4(X) = X6

X5−X
. Q(X) = X5 − X = X(X4 − 1) = X(X2 − 1)(X2 + 1) =

X(X −1)(X +1)(X2 +1). Le degre du numerateur (6) est superieur au degre
du denominateur (5). Il y a une partie entière E(X). Division euclidienne de
A = X6 par Q = X5 −X : X6 = X(X5 −X)+X2. Partie entière E(X) = X.
Reste R(X) = X2. F4(X) = X + X2

X5−X
= X + X2

X(X4−1) = X + X
X4−1 . Soit

G(X) = X
X4−1 . G(X) a pour poles simples ±1, ±i. Forme de la decomposition

de G(X) : G(X) = a
X−1 + b

X+1 + c
X−i

+ d
X+i

.
Calcul des coefficients de G(X) sur C :
a (pole 1) : a =

[
X

4X3

]
X=1

= 1
4 .

b (pole -1) : b =
[

X
4X3

]
X=−1

= −1
−4 = 1

4 .
c (pole i) : c =

[
X

4X3

]
X=i

= i
4i3 = 1

4i2 = −1
4 .

d (pole −i) : d = c = −1
4 .

8



Decomposition dans C(X) :

F4(X) = X + 1
4

1
X − 1 + 1

4
1

X + 1 − 1
4

1
X − i

− 1
4

1
X + i

Decomposition dans R(X) : On regroupe les poles conjugues i et −i :
−1

4

(
1

X−i
+ 1

X+i

)
= −1

4
X+i+X−i

(X−i)(X+i) = −1
4

2X
X2+1 = −1

2
X

X2+1 .

F4(X) = X + 1
4(X − 1) + 1

4(X + 1) − 1
2

X

X2 + 1

5. Soit F5(X) = X6+1
X5−X4+X3−X2+X−1 . On a serie geometrique : 1 − X + X2 −

X3 + X4 − X5 = ∑5
k=0(−X)k = 1−(−X)6

1−(−X) = 1−X6

1+X
. Donc denominateur est :

X6−1
1+X

, et F5(X) = (X6−1+2)(X+1)
X6−1 = X + 1 + 2 X+1

X6−1 .

On a X6 − 1 =
5∏

k=0
(X − e

2kπi
6 ) = (X − 1)(X − e

πi
3 )(X − e

2πi
3 )(X − eπi)(X −

e
4πi

3 )(X − e
5πi

3 ). Regrouper les racines et son conjuge (e 2kπi
6 et e

2(6−k)πi
6 sont

conjuge), on a
X6 − 1 = (X − 1)(X − e

πi
3 )(X − e

5πi
3 )(X + 1)(X − e

2πi
3 )(X − e

4πi
3 )

Soit G(X) = 2(X+1)
X6−1 , on a G(X) = 2

(X−e
πi
3 )(X−e

5πi
3 )(X−1)(X−e

2πi
3 )(X−e

4πi
3 )

=
2

X5−X4+X3−X2+X−1 . On pose j = e
2πi

3 et j′ = e
πi
3 , on sait (X − e

2πi
3 )(X −

e
4πi

3 ) = (X −j)(X −j2) = X2 +X +1 et (X −e
πi
3 )(X −e

5πi
3 ) = (X −j′)(X −

j′) = X2 − X + 1. (On peux utiliser que une j car en fait on a j′ = −j2 et
j′ = −j.)
Sur C : Par thm du cours, on sait que G(X) = 2(X+1)

X6−1 =
∑

k=0,1,2,4,5

ck

X − e
kπi

3

ou ck = 2(e
kπi

3 +1)
6(e

kπi
3 )5

= e
kπi

3 +1
3e

−kπi
3

. On a c0 = 2
3 , c1 = j′+1

3j′ , c5 = j′+1
3j′ , c2 = j+1

3j2 =
−1

3 = c4.
F5(X) = X + 1 +

∑
k=0,1,2,4,5

ck

X − e
kπi

3
.

Sur R : On doit remarquer que j2 + j + 1 = 0, j3 = 1 et j′2 − j′ + 1 = 0 et
j′3 = −1. G(X) = 2(X+1)

X6−1 = 2
3

1
X−1 + −1

3 ( 1
X−j

+ 1
X−j2 ) + ( j′+1

3j′
1

X−j′ + j′+1
3j′

1
X−j′ ).

On a −1
3 ( 1

X−j
+ 1

X−j2 ) = −1
3

2X+1
X2+X+1). Et on a j′+1

3j′
1

X−j′ + j′+1
3j′

1
X−j′ = −1

X2−X+1 .
Conclusion : ....

6. Décomposition de F6 = 1
Xn−1

Les pôles sont les racines n-ièmes de l’unité : ωk = ei 2kπ
n pour k ∈ {0, . . . , n−

1}. Ce sont des pôles simples.
Sur C : La formule pour un pôle simple α d’une fraction 1/Q(X) est 1

Q′(α) .
Ici Q′(X) = nXn−1. Le coefficient associé à ωk est :

1
nωn−1

k

= ωk

nωn
k

= ωk

n
(car ωn

k = 1)

Résultat sur C :
1

Xn − 1 =
n−1∑
k=0

ωk

n(X − ωk)

9



Sur R : Il faut regrouper les racines conjuguées ωk et ω̄k = ωn−k. Le terme
regroupé est :

ωk

n(X − ωk) + ω̄k

n(X − ω̄k) = 1
n

ωk(X − ω̄k) + ω̄k(X − ωk)
X2 − 2 cos(2kπ

n
)X + 1

Le numérateur vaut X(ωk + ω̄k) − 2ωkω̄k = 2X cos(2kπ
n

) − 2. Donc le terme
réel est 2

n
X cos(θk)−1

X2−2X cos(θk)+1 avec θk = 2kπ
n

.
Cas 1 : n impair (n = 2m + 1). Seule racine réelle : 1.

1
Xn − 1 = 1

n(X − 1) +
m∑

k=1

2
n

X cos(2kπ
n

) − 1
X2 − 2X cos(2kπ

n
) + 1

Cas 2 : n pair (n = 2m). Racines réelles : 1 et -1. Le coefficient pour −1
(obtenu pour k = m) est −1

n(X+1) .

1
Xn − 1 = 1

n(X − 1) − 1
n(X + 1) +

m−1∑
k=1

2
n

X cos(2kπ
n

) − 1
X2 − 2X cos(2kπ

n
) + 1
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