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Exercice 1
Exercice 17. Question 7. Exprimer comme produit de facteurs linéaires z2 −2z +
4i.

Solution

Pour l’equation z2 − 2z + 4i = 0, on a ∆ = (−2)2 − 4(1)(4i) = 4 − 16i = 4(1 − 4i).
Racines carrées de 1 − 4i : (x + iy)2 = 1 − 4i =⇒ x2 − y2 = 1, 2xy = −4, x2 +
y2 =

√
17. x = ±

√√
17+1
2 , y = ∓

√√
17−1
2 , donc les deux racines de 1 − 4i sont√√

17+1
2 − i

√√
17−1
2 et −

√√
17+1
2 + i

√√
17−1
2 . Soit δ0 une racine carrée de 1 − 4i.

Racines carrées de ∆ : ±2δ0. Les solution de z2 −2z+4i = 0 sont z = 2±2δ0
2 = 1±δ0.

P (z) = (z − (1 + δ0))(z − (1 − δ0)).

Exercice 2
Exercice 19.

1. Déterminer les formes cartésiennes, trigonométriques et exponentielles des
racines 4-èmes de 1 + i

√
3.

2. En déduire les valeurs de cos π
12 et sin π

12 .

Solution

1. Soit w = 1 + i
√

3. Nous cherchons les nombres complexes z tels que z4 = w.
Étape 1 : Forme exponentielle de w
D’abord, mettons w sous forme exponentielle.
— Module : |w| =

√
12 + (

√
3)2 =

√
1 + 3 = 2.

— Argument : arg(w) = θ tel que cos θ = 1
2 et sin θ =

√
3

2 . Donc θ = π
3 .

La forme exponentielle de w est w = 2eiπ/3.
Étape 2 : Formes exponentielles et trigonométriques des racines
4-èmes
Les racines 4-èmes de w = reiθ sont données par la formule zk = r1/4ei( θ+2kπ

4 )

pour k ∈ {0, 1, 2, 3}. Ici, r = 2 et θ = π/3. Le module des racines est
21/4 =

√
2.

— Pour k = 0 : z0 =
√

2ei
π/3

4 =
√

2eiπ/12.

1



Forme trigonométrique : z0 =
√

2(cos(π/12) + i sin(π/12)).
— Pour k = 1 : z1 =

√
2ei( π

12 + π
2 ) =

√
2ei7π/12.

Forme trigonométrique : z1 =
√

2(cos(7π/12) + i sin(7π/12)).
— Pour k = 2 : z2 =

√
2ei( π

12 +π) =
√

2ei13π/12.
Forme trigonométrique : z2 =

√
2(cos(13π/12) + i sin(13π/12)).

— Pour k = 3 : z3 =
√

2ei( π
12 + 3π

2 ) =
√

2ei19π/12.
Forme trigonométrique : z3 =

√
2(cos(19π/12) + i sin(19π/12)).

Étape 3 : Formes cartésiennes des racines 4-èmes
Pour trouver la forme cartésienne, nous calculons les racines carrées des
racines carrées de w.
— Racines carrées de w = 2eiπ/3 : Les racines carrées de w sont δ =

±
√

2eiπ/6.

δ1 =
√

2(cos(π/6) + i sin(π/6)) =
√

2
(√

3
2 + i

2

)
=

√
6

2 + i

√
2

2

δ2 = −δ1 = −
√

6
2 − i

√
2

2
— Racines carrées de δ1 : Cherchons z = x + iy tel que z2 = δ1. On a le

système :
x2 − y2 = Re(δ1) =

√
6

2
2xy = Im(δ1) =

√
2

2

x2 + y2 = |δ1| =
√

(
√

6
2 )2 + (

√
2

2 )2 =
√

6
4 + 2

4 =
√

2

En additionnant la première et la troisième ligne : 2x2 =
√

2 +
√

6
2 =⇒

x2 = 2
√

2+
√

6
4 . En soustrayant la première de la troisième : 2y2 =

√
2 −

√
6

2 =⇒ y2 = 2
√

2−
√

6
4 . (Note : 2

√
2 ≈ 2.828 et

√
6 ≈ 2.449, donc

2
√

2 −
√

6 > 0). Comme 2xy > 0, x et y sont de même signe. Les deux
racines carrées de δ1 sont :

z0 =

√
2
√

2 +
√

6
2 + i

√
2
√

2 −
√

6
2 et z2 = −z0

— Racines carrées de δ2 : Les racines carrées de δ2 = −δ1 sont ±iz0.

z1 = iz0 = −

√
2
√

2 −
√

6
2 + i

√
2
√

2 +
√

6
2 et z3 = −z1

Les quatre racines 4-èmes de w sous forme cartésienne sont donc z0, z1, z2, z3.
2. Déduction de cos(π/12) et sin(π/12)

Nous identifions la forme trigonométrique et la forme cartésienne de la même
racine, z0.

z0 =
√

2(cos(π/12) + i sin(π/12)) =

√
2
√

2 +
√

6
2 + i

√
2
√

2 −
√

6
2

En identifiant les parties réelle et imaginaire :

√
2 cos(π/12) =

√
2
√

2 +
√

6
2 et

√
2 sin(π/12) =

√
2
√

2 −
√

6
2
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Simplifions les expressions avec des racines imbriquées. On utilise l’astuce√
A ±

√
B =

√
A+

√
A2−B
2 ±

√
A−

√
A2−B
2 ou on factorise. Pour la partie réelle :√

2
√

2 +
√

6 =
√√

2(2 +
√

3) =
√

2
√

2 +
√

3

On sait que 2 +
√

3 = 4+2
√

3
2 = (

√
3+1)2

2 . Donc
√

2 +
√

3 =
√

3+1√
2 . Ainsi,√

2
√

2 +
√

6 =
√

2 ·
√

3+1√
2 = 21/4 ·

√
3+1

21/2 = 2−1/4(
√

3 + 1). En substituant dans
l’équation pour le cosinus :

√
2 cos(π/12) = 2−1/4(

√
3 + 1)

2 =⇒ cos(π/12) = 2−1/4(
√

3 + 1)
2 · 21/4 =

√
3 + 1
2
√

2

cos(π/12) =
√

6 +
√

2
4

De même pour la partie imaginaire :
√

2
√

2 −
√

6 =
√

2
√

2 −
√

3 =
√

2 ·
√

3 − 1√
2

= 2−1/4(
√

3 − 1)

En substituant dans l’équation pour le sinus :

√
2 sin(π/12) = 2−1/4(

√
3 − 1)

2 =⇒ sin(π/12) =
√

3 − 1
2
√

2

sin(π/12) =
√

6 −
√

2
4

1 Exercices d’approfondissement
Exercice 3
Exercice 23 Soient z1 = 3

√
2(1 + i), z2 =

√
3 + i.

1. Déterminer les formes exponentielle et trigonométrique de z1 et z2.
2. Déterminer la forme cartésienne de z = z1

z2
2
.

3. Déterminer les formes exponentielle et trigonométrique de z.
4. En déduire les valeurs de cos π

12 et sin π
12 .

Solution

1. Pour z1 = 3
√

2(1+i) = 3
√

2+i3
√

2. |z1| =
√

(3
√

2)2 + (3
√

2)2 =
√

18 + 18 =
6. z1 = 6(

√
2

2 + i
√

2
2 ). arg(z1) = π/4. z1 = 6eiπ/4 = 6(cos(π/4) + i sin(π/4)).

Pour z2 =
√

3 + i. |z2| =
√

3 + 1 = 2. z2 = 2(
√

3
2 + i1

2). arg(z2) = π/6.
z2 = 2eiπ/6 = 2(cos(π/6) + i sin(π/6)).

2. z2
2 = (

√
3 + i)2 = 3 − 1 + 2i

√
3 = 2 + 2i

√
3. z = 3

√
2(1+i)

2+2i
√

3 = 3
√

2(1+i)
2(1+i

√
3) =

3



3
√

2(1+i)(1−i
√

3)
2(1+3) = 3

√
2

8 (1 − i
√

3 + i +
√

3). z = 3
√

2(1+
√

3)
8 + i3

√
2(1−

√
3)

8 .

3. En utilisant les formes exponentielles : z = 6eiπ/4

(2eiπ/6)2 = 6eiπ/4

4ei2π/6 = 3
2ei(π/4−π/3) =

3
2e−iπ/12. Forme trigonométrique : 3

2(cos(−π/12) + i sin(−π/12)).
4. On identifie les formes cartésienne et trigonométrique de z. 3

2(cos(−π/12) +
i sin(−π/12)) = 3

2(cos(π/12) − i sin(π/12)). 3
2 cos(π/12) = 3

√
2(1+

√
3)

8 =⇒
cos(π/12) =

√
2(1+

√
3)

4 =
√

2+
√

6
4 . −3

2 sin(π/12) = 3
√

2(1−
√

3)
8 =⇒ sin(π/12) =

−
√

2(1−
√

3)
4 =

√
6−

√
2

4 .

Exercice 4
Exercice 24. Pour tout entier n ≥ 1, déterminer les racines n-ièmes des nombres
suivants : in/2, 2nei(2n+3)π.

Solution

— Pour w1 = in/2 = (eiπ/2)n/2 = einπ/4. On cherche z ∈ C tel que zn = w1.
Les racines n-ièmes sont de la forme zk = |w1|1/nei(arg(w1)+2kπ)/n pour k =
0, . . . , n − 1. Ici, |w1| = 1 et arg(w1) = nπ/4.

zk = 11/nei(nπ/4+2kπ)/n = ei(π/4+2kπ/n)

— Pour w2 = 2nei(2n+3)π. L’argument est (2n + 3)π = 2nπ + 3π ≡ π (mod 2π).
Donc w2 = 2neiπ = −2n. On cherche z ∈ C tel que zn = −2n. Le module est
|w2| = 2n et l’argument est π. Les racines n-ièmes sont :

zk = (2n)1/nei(π+2kπ)/n = 2ei
(2k+1)π

n pour k = 0, . . . , n − 1

Exercice 5

Exercice 26. On considère le nombre complexe : µ =
√

5−1+i
√

10+2
√

5
4 .

1. Montrer que µ = ei2π/5.
2. Écrire sous forme cartésienne z = eiπ/3.
3. Écrire µ/z sous forme trigonométrique, exponentielle et cartésienne.
4. En déduire les valeurs de cos π

15 et de sin π
15 .

Solution

1. On considère le nombre complexe :

µ =
√

5 − 1 + i
√

10 + 2
√

5
4

Nous voulons démontrer que µ = ei2π/5 sans utiliser la connaissance préalable des
valeurs de cos(2π/5) et sin(2π/5).
On commence par démontrer que µ est une racine 5-ième primitive de l’unité.
Cela nécessite deux conditions :
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1. µ5 = 1
2. µ ̸= 1

—
Étape 1 : Vérification de µ ̸= 1

µ =
√

5 − 1
4 + i

√
10 + 2

√
5

4

Comme
√

10 + 2
√

5 > 0, la partie imaginaire Im(µ) est non nulle. Donc, µ ̸= 1.
—
Étape 2 : Vérification de µ5 = 1
Si µ ̸= 1 et µ5 = 1, alors µ doit satisfaire µ5 − 1 = 0, c’est-à-dire :

(µ − 1)(µ4 + µ3 + µ2 + µ + 1) = 0

Puisque µ ̸= 1, il suffit de démontrer que :

µ4 + µ3 + µ2 + µ + 1 = 0

Calculer directement µ2, µ3, µ4 serait très compliqué. Nous utilisons une méthode
plus astucieuse.
2a. Vérification du module de µ
D’abord, calculons le carré du module de µ :

|µ|2 = (Re(µ))2 + (Im(µ))2

|µ|2 =
(√

5 − 1
4

)2

+

√

10 + 2
√

5
4

2

|µ|2 = (
√

5 − 1)2

16 + 10 + 2
√

5
16

|µ|2 = (5 − 2
√

5 + 1) + (10 + 2
√

5)
16

|µ|2 = 6 − 2
√

5 + 10 + 2
√

5
16

|µ|2 = 16
16 = 1

Comme |µ|2 = 1 et |µ| ≥ 0, on obtient |µ| = 1.
2b. Transformation de l’équation
Puisque |µ| = 1 (et donc µ ̸= 0), on peut diviser les deux côtés de l’équation
µ4 + µ3 + µ2 + µ + 1 = 0 par µ2 :

µ2 + µ + 1 + 1
µ

+ 1
µ2 = 0

(
µ2 + 1

µ2

)
+
(

µ + 1
µ

)
+ 1 = 0

Puisque |µ| = 1, on sait que µ · µ̄ = |µ|2 = 1, donc 1
µ

= µ̄.
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— µ + 1
µ

= µ + µ̄ = 2 Re(µ)
— µ2 + 1

µ2 =
(
µ + 1

µ

)2
− 2 = (2 Re(µ))2 − 2

Posons x = 2 Re(µ). L’équation
(
µ2 + 1

µ2

)
+
(
µ + 1

µ

)
+ 1 = 0 devient :

(x2 − 2) + x + 1 = 0

x2 + x − 1 = 0

2c. Vérification que µ satisfait cette équation
Il nous suffit maintenant de vérifier si x = 2 Re(µ) est solution de l’équation x2 +
x − 1 = 0.
D’après la définition de µ :

x = 2 Re(µ) = 2
(√

5 − 1
4

)
=

√
5 − 1
2

En substituant x =
√

5−1
2 dans x2 + x − 1 :

(√
5 − 1
2

)2

+
(√

5 − 1
2

)
− 1

=
(

5 − 2
√

5 + 1
4

)
+
(√

5 − 1
2

)
− 1

=
(

6 − 2
√

5
4

)
+
(

2(
√

5 − 1)
4

)
− 4

4

= (6 − 2
√

5) + (2
√

5 − 2) − 4
4

= 6 − 2
√

5 + 2
√

5 − 2 − 4
4

= 6 − 2 − 4
4 = 0

4 = 0

Le résultat est 0. Cela prouve que x = 2 Re(µ) satisfait x2 + x − 1 = 0, et par
conséquent, µ satisfait µ4 + µ3 + µ2 + µ + 1 = 0.
—
Étape 3 : Conclusion
Nous avons démontré que :

1. µ ̸= 1
2. µ5 = 1

Donc, µ est une racine 5-ième primitive de l’unité.
Il y a 4 racines 5-ièmes primitives de l’unité : ei2π/5, ei4π/5, ei6π/5, ei8π/5.
Nous observons les signes de µ :

— Re(µ) =
√

5−1
4 > 0 (partie réelle positive)

— Im(µ) =
√

10+2
√

5
4 > 0 (partie imaginaire positive)

µ est situé dans le premier quadrant du plan complexe.
Parmi les 4 racines primitives :
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— ei2π/5 : 1er quadrant (cos > 0, sin > 0)
— ei4π/5 : 2ème quadrant (cos < 0, sin > 0)
— ei6π/5 : 3ème quadrant (cos < 0, sin < 0)
— ei8π/5 : 4ème quadrant (cos > 0, sin < 0)

La seule racine 5-ième primitive de l’unité située dans le premier quadrant est ei2π/5.
Par conséquent, µ = ei2π/5.
2. z = eiπ/3 = cos(π/3) + i sin(π/3) = 1

2 + i
√

3
2 .

3. Forme exponentielle : µ
z

= ei2π/5

eiπ/3 = ei(2π/5−π/3) = ei(6π−5π)/15 = eiπ/15. Forme
trigonométrique : cos(π/15) + i sin(π/15). Forme cartésienne :

µ

z
=

√
5−1+i

√
10+2

√
5

4
1+i

√
3

2

=
(
√

5 − 1 + i
√

10 + 2
√

5)(1 − i
√

3)
2(1 + 3)

=
(
√

5 − 1) +
√

3
√

10 + 2
√

5 + i(
√

10 + 2
√

5 −
√

3(
√

5 − 1))
8

4. En identifiant les parties réelle et imaginaire :

cos(π/15) =
√

5 − 1 +
√

30 + 6
√

5
8

sin(π/15) =

√
10 + 2

√
5 −

√
15 +

√
3

8

Exercice 6
Exercice 28.

1. Donner une racine 6-ème primitive de l’unité sous formes cartésienne et ex-
ponentielle.

2. Vérifier que 2 + i est une racine 6-ème de w = −117 + 44i.
3. Déterminer les formes exponentielle et cartésienne de toutes les racines 6-

èmes de w.
4. Dessiner les racines 6-èmes de w dans le plan cartésien, et décrire la figure

obtenue.

Solution

1. Les racines 6-èmes de l’unité sont uk = ei2kπ/6 = eikπ/3 pour k ∈ {0, . . . , 5}.
Une racine est primitive si pgcd(k, 6) = 1. C’est le cas pour k = 1 et k = 5.
Pour k = 1, on a u1 = eiπ/3. Forme exponentielle : eiπ/3. Forme cartésienne :
cos(π/3) + i sin(π/3) = 1

2 + i
√

3
2 .

2. On calcule (2+i)6. (2+i)2 = 3+4i. (2+i)3 = (3+4i)(2+i) = 6+3i+8i−4 = 2+11i.
(2 + i)6 = ((2 + i)3)2 = (2 + 11i)2 = 4 + 44i − 121 = −117 + 44i. C’est vérifié.
3. Soit z0 = 2+i. Les autres racines 6-èmes de w sont zk = z0·uk pour k ∈ {0, . . . , 5}.
En général, pour trouver toutes les racines n-ièmes d’un nombre complexe w, on
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cherche tous les nombres complexes z tels que zn = w.
1. On suppose qu’on a déjà trouvé une racine particulière, z0. On a donc zn

0 = w.
2. Les racines n-ièmes de l’unité, que l’on note uk (pour k = 0, . . . , n − 1), sont

toutes les solutions de l’équation un = 1.
3. Si l’on définit un nouveau nombre zk en posant zk = z0 · uk, on peut calculer

sa puissance n-ième :

(zk)n = (z0 · uk)n = (z0)n · (uk)n

4. En utilisant les égalités des points 1 et 2, on peut remplacer les termes dans
l’équation :

(zk)n = (w) · (1) = w

Ceci prouve que n’importe quel zk (formé en multipliant la racine z0 par une racine
de l’unité uk) est aussi une racine n-ième de w.
Puisqu’il y a n racines de l’unité uk distinctes, leur multiplication par z0 permet de
générer les n racines distinctes de w.

— z0 = 2 + i.
— z1 = (2 + i)(1

2 + i
√

3
2 ) = 2−

√
3

2 + i2
√

3+1
2 .

— z2 = (2 + i)(−1
2 + i

√
3

2 ) = −2−
√

3
2 + i2

√
3−1
2 .

— z3 = (2 + i)(−1) = −2 − i.
— z4 = (2 + i)(−1

2 − i
√

3
2 ) = −2+

√
3

2 − i2
√

3+1
2 .

— z5 = (2 + i)(1
2 − i

√
3

2 ) = 2+
√

3
2 − i2

√
3−1
2 .

Pour la forme exponentielle, |z0| =
√

5 et arg(z0) = arctan(1/2). Soit ϕ =
arctan(1/2). zk =

√
5eiϕ · eikπ/3 =

√
5ei(ϕ+kπ/3).

4. Les points Ak d’affixes zk sont les sommets d’un hexagone régulier centré à
l’origine O, inscrit dans le cercle de rayon R =

√
5. L’un des sommets de cet

hexagone est le point A0 d’affixe z0 = 2 + i.
L’argument de ce sommet, θ0 = arg(z0) = arctan(1/2), fixe l’orientation de l’hexa-
gone. Les autres sommets Ak s’en déduisent par des rotations successives de A0
autour de l’origine, d’angle π/3 (ou 60◦).

Exercice 7
Exercice 29.L’objectif est d’écrire au moyen de racines carrées de nombres réels
les nombres cos π

5 , sin π
5 , cos π

10 et sin π
10 .

Solution

Soit z = eiθ une racine 5-ème de l’unité, z5 = 1, avec θ ̸= 2kπ. L’équation z5 −1 = 0
implique (z −1)(1+z +z2 +z3 +z4) = 0. Comme z ̸= 1, on a 1+z +z2 +z3 +z4 = 0.
On divise par z2 (qui est non nul) : z−2 + z−1 + 1 + z + z2 = 0. En regroupant
les termes : (z2 + z−2) + (z + z−1) + 1 = 0. En utilisant les formules d’Euler,
zk + z−k = 2 cos(kθ). L’équation devient 2 cos(2θ) + 2 cos(θ) + 1 = 0. Avec la
formule cos(2θ) = 2 cos2(θ) − 1, on a : 2(2 cos2(θ) − 1) + 2 cos(θ) + 1 = 0 =⇒
4 cos2(θ) + 2 cos(θ) − 1 = 0. C’est une équation du second degré en cos(θ). Les
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solutions sont cos(θ) = −2±
√

4−4(4)(−1)
8 = −1±

√
5

4 . Pour θ = 2π/5 (Q1), cos(2π/5) >

0, donc cos(2π/5) =
√

5−1
4 . Pour θ = 4π/5 (Q2), cos(4π/5) < 0, donc cos(4π/5) =

−1−
√

5
4 . On a cos(4π/5) = − cos(π/5), donc cos(π/5) = 1+

√
5

4 . On en déduit les sinus
(positifs car les angles sont dans [0, π]) : sin2(π/5) = 1 − cos2(π/5) = 1 − (1+

√
5

4 )2 =

1 − 1+2
√

5+5
16 = 10−2

√
5

16 . sin(π/5) =
√

10−2
√

5
4 . Avec les formules de l’angle moitié :

cos2(π/10) = 1+cos(π/5)
2 = 1+(1+

√
5)/4

2 = 5+
√

5
8 . cos(π/10) =

√
5+

√
5

8 =
√

10+2
√

5
4 .

sin2(π/10) = 1−cos(π/5)
2 = 1−(1+

√
5)/4

2 = 3−
√

5
8 . sin(π/10) =

√
3−

√
5

8 =
√

6−2
√

5
4 =

√
5−1
4 .

Exercice 8
Exercice 32.

1. Déterminer les formes trigonométriques et exponentielles des racines 5-èmes
de l’unité.

2. Dessiner de façon approximative les racines 5-èmes de l’unité dans le plan
cartésien.

3. Soit z = x+iy une racine 5-ème de l’unité. Trouver les valeurs possibles pour
y/x.

4. En déduire les valeurs de tan π
5 et tan π

10 .
5. En utilisant le fait que x2 + y2 = 1, déterminer les formes cartésiennes des

racines 5-èmes de l’unité.
6. En déduire les valeurs de cos π

5 , sin π
5 , cos π

10 et sin π
10 .

Solution

Cet exercice est très similaire à l’exercice 29. Les résultats sont dérivés de la même
manière.

1. Les racines 5-èmes de l’unité sont uk = ei2kπ/5 = cos(2kπ/5) + i sin(2kπ/5)
pour k ∈ {0, 1, 2, 3, 4}.

2. Les points forment un pentagone régulier inscrit dans le cercle unité.
3. y/x = tan(arg(z)). Les arguments sont 0, 2π/5, 4π/5, 6π/5, 8π/5. Les valeurs

possibles de tan sont 0, ± tan(π/5), ± tan(2π/5).
4. L’équation 5−10 tan2 θ+tan4 θ = 0 (ou t4 −10t2 +5 = 0 en posant t = tan θ)

est obtenue en résolvant sin(5θ) = 0 et en l’exprimant comme un polynôme
en tan θ.
Voici la dérivation étape par étape :
Idée centrale Les angles θ que nous recherchons (comme π/5, 2π/5, etc.)
satisfont la condition que 5θ est un multiple de π. Par conséquent, sin(5θ) =
0.
Étape 1 : Formule de Moivre Nous savons qu’une racine 5-ième de l’unité
z = eiθ satisfait z5 = 1. D’après la formule de Moivre :

z5 = (cos θ + i sin θ)5 = cos(5θ) + i sin(5θ)
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Puisque z5 = 1 + 0i, nous devons avoir la partie imaginaire nulle :

sin(5θ) = 0

Étape 2 : Développement binomial Nous utilisons la formule du binôme
de Newton pour développer (cos θ + i sin θ)5. Posons a = cos θ et b = i sin θ.

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

La partie imaginaire de ce développement est sin(5θ). Elle correspond aux
termes où i a une puissance impaire (b, b3, b5) :

Im(z5) = Im(5a4b + 10a2b3 + b5)

Im(z5) = Im(5(cos4 θ)(i sin θ) + 10(cos2 θ)(i sin θ)3 + (i sin θ)5)

Im(z5) = Im(5i cos4 θ sin θ + 10i3 cos2 θ sin3 θ + i5 sin5 θ)

Puisque i3 = −i et i5 = i, nous obtenons :

Im(z5) = Im(i(5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ))

Donc :
sin(5θ) = 5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ

Étape 3 : Conversion en équation en tan θ

Nous posons sin(5θ) = 0 :

5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ = 0

Les solutions que nous cherchons (θ = π/5, 2π/5, . . . ) ne sont pas π/2 ou
3π/2. Par conséquent, cos θ ̸= 0. Nous pouvons diviser l’équation entière par
cos5 θ (qui est non nul) :

5 cos4 θ sin θ

cos5 θ
− 10 cos2 θ sin3 θ

cos5 θ
+ sin5 θ

cos5 θ
= 0

5
(

sin θ

cos θ

)
− 10

(
sin3 θ

cos3 θ

)
+
(

sin5 θ

cos5 θ

)
= 0

Étape 4 : Résolution
Posons t = tan θ. L’équation devient :

5t − 10t3 + t5 = 0

Nous pouvons factoriser par t :

t(t4 − 10t2 + 5) = 0

Les solutions de cette équation sont toutes les valeurs de t = tan θ pour
lesquelles sin(5θ) = 0 (c’est-à-dire θ = kπ/5).
— t = 0 : Cette solution correspond à θ = 0, π, . . . (puisque tan(0) = 0).

10



— t4−10t2+5 = 0 : Les solutions de cette équation doivent être les tangentes
de tous les autres angles, c’est-à-dire tan(π/5), tan(2π/5), tan(3π/5), et
tan(4π/5).

En résolvant 5 − 10 tan2 θ + tan4 θ = 0 (voir ex. 29), on trouve tan2(π/5) =
5 − 2

√
5 et tan2(2π/5) = 5 + 2

√
5. Donc tan(π/5) =

√
5 − 2

√
5. Pour

tan(π/10), on utilise cos(π/5) = 1−tan2(π/10)
1+tan2(π/10) et cos(π/5) = 1+

√
5

4 pour trouver

tan(π/10) =
√

3−
√

5
5+

√
5 .

5. Les formes cartésiennes sont (voir ex. 29) : u0 = 1, u1 =
√

5−1
4 + i

√
10+2

√
5

4 ,

u2 = −
√

5+1
4 + i

√
10−2

√
5

4 , u3 = ū2, u4 = ū1.
6. Par identification avec u2 = cos(4π/5)+i sin(4π/5) = − cos(π/5)+i sin(π/5),

on a : cos(π/5) =
√

5+1
4 et sin(π/5) =

√
10−2

√
5

4 . Puis par les formules de

l’angle moitié : cos(π/10) =
√

10+2
√

5
4 et sin(π/10) =

√
5−1
4 .
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