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1. WEIL GROUPS

For this section, reference is [I] and the article number theoretic background by J.Tate in [2].

O = =

Ne)

10
10
10
11
11
12
12
12
14
22
23

The language of class formation is axiomatic approach to handle local and global class field
theory. For example, when K is a finite algebraic number field, the formation module A can be

K>, idéle group of K or idéle class groups of K.
Let G be a topological group,

Definition 1.1. A formation (G,{Gr}; A) consists of:

(1) A group G, together with an indexed family {G g} pex; of subgroups of G satisfying the following

conditions:
(a) Each element of {Gr} is of finite index in G.

Each subgroup of G which contains a member of the family {Gr} also belongs to the family.

(b)
(¢) The intersection of two members of the family {Gr} also belongs to the family.
(d) Any conjugate of a member of the family {Gr} is also a member of the family.
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2 SOME NOTES ON LOCAL LANGLANDS CORRESPONDENCE

(e) The intersection of all members of the family {Gr} is the identity:

() Gr=1

Fex

(2) A G-module A such that A = | J,.x, A97, in other words, such that every element of A is left
fixed by some member of the family {Gg}.

We call the submodule Ar := A®F in (2) above the F-level. The index (G : Gk ) which is finite
by assumption is called the degree of the layer K/F and is denoted by [K : F']. The layer is called a
normal layer if Gk is a normal subgroup of Gp. The factor group Gr/G is called the galois group
of the normal layer. Fix notation: H"(K/F) := H"(Gr/Gk, Ax), and H?(x/F) := lim H?*(K/F)
where K /F normal.

If moreover, the following axioms are satisfied, then the formation is called a class formation.

Axiom 0: In each cyclic layer of prime degree, the Herbrand quotient hy); is defined and equal
to the degree.

Axiom I: (Field Formation Aziom) H'(K/F) = 0 for all normal layer K /F.

Axiom II: For each field F, there is an isomorphism o — Invp a of the Brauer group into Q/Z,
such that:

1

(a) If K/F is a normal layer of degree n, then image of H?(K/F) is —Z/7 < Q/Z.
n

(b) For each layer E/F of degree n we have

Invg Respp = nlnvp

1
Let us assume (G, {GFr}, A) is a class formation, H?(K/F) is isomorphic to —Z/Z, any rational
n,

number ¢ which can be written with denominator n determines a unique o € H?(K/F) such that
Invpa=t (modZ), this « is called the cohomology class with invariant t. If we are working with
a complex X for the Galois group G'k/p of the layer, and f: Xy — Ak is a cocycle in the class «,
call f is a cocycle with invariant t. The class with invariant 1/n generates H?(K/F), it is called
fundamental class of layer K/F, cocycle f representing it is called a fundamental 2-cocycle.

Definition 1.2. (Weil Group for a normal layer) Let K/F be a normal layer in a class

formation. A Weil group (U, g,{fr}) for the layer K/F consists of the following objects:

(1) A group U.

(2) A homomorphism g of U onto the Galois group G r. And define for each intermediate field
F c E c K, the subgroup Ug = g~ (Gk/g).

(3) A set of homomorphisms fr : Ag = Ug/Ug of the E-level onto the factor commutator group
of Ug, one for each intermediate field.

such that (U, g,{fr}) satisfying:

(a) For each intermediate layer E'/E, F < E c E' < K, the following diagram is commutative:

Ap —=— Ug/Us,

\[ J{VE’/E

AE/ i> UE//UC/
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where horizontal isomorphisms are induced by fg, fgr, left vertical is inclusion map and right
vertical arrow is the group theoretic transfer (Verlagerung, see [I] Chapter XIII or Serre Chapter
VII) from UE to UE/.

(b) Let u be an element of U and put o = g(u) € Gg,p. Then it is clear that U = Ug-. Then the
following diagram is commutative:

& J»
Apge —— Ugo JU%o
where the right vertical arrow is the map of the factor commutator groups induced by conju-
gation by u: Ug — uUgu™' = Ugeo.

(¢) Suppose L/E is a normal intermediate level, F ¢ E ¢ L < K. Then the map g induces an
isomorphism

Uep/UL = Gg/g/GkiL = Gr/E

Since fr, : Ap = Ur/Ug, Ug/Uf can be viewed as a group extension of Ay, by G, as follows:
(1) ].%AL%UL/UE%UE/UEEUE/UL%GL/E%1

The operation of Gy on Ar associated with this extension is the natural one. Property (c)
requires that the class of extension in [1|is the fundamental class oy, g of the layer L/E.
(d) Uk =1

Theorem 1.1. (Existence of Weil Group for normal layers)) Let K/F be a normal layer
in a class formation. Then there exists a Weil group (U, g,{fr}) for the layer K/F.

We can see that a Weil group for a big normal layer K;/F; contains information about all
intermediate layers K/F (see [1] Chapter XV Theorem 3). This suggests the definition of Weil
group for the whole class formation:

Definition 1.3. Let (G,{Gr}, A) be a topological class formation. A Weil group (U, g,{fr}) for
the formation consists of the following objects:
(1) A topological group U.
(2) A representation g of U onto the dense subgroup of the Galois group G of the formation.
(3) For each F of our formation, an isomorphism
fF : AF = UF/Ug

where U denotes the closure of the commutator subgroup Up.
In order to constitute a Weil group, (U, g,{fr}) must have the following properties:
(a) For each layer E/F, then the following diagram commutes:

Ap —=— Up/Us

| I

Ap —=— Ug/Us,
where V is the transfer map.

(b) Let u € U and let ¢ = g(u) € G. Then it is clear that u(Ug)u~! = Ugo, then the following
diagram commutes for each F:
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Ap —=— Ugp/Ug
Ape —=— Ugs JUE,
(¢) For each normal layer K/F, the class of the group extension

(2) 14)AKEUK/UIC(*>UF/UIC<%UF/UKEGK/F% 1

is the fundamental class of the layer K/F.
(d) We finally requires that
U—lmU/Ug
is an isomorphism of topological groups.

If k is the ground field, then U /U, for variable K normal over k is the Weil group for the normal
layer K /k.

For proofs of the following two theorems, please see [I, Artin-Tate| Chapter XV, theorem 7 and
theorem 8.

Theorem 1.2. Suppose (G,{Gr}, A) is a topological class formation satisfying the following three
conditions:

(a) The norm map Ngjp : Ap — AF is an open map for each layer E/F.

(b) The factor group Ag/Ar is compact for each layer E/F.

(¢) The Galois group G is complete.

Then there exists a Weil group (U, g,{fr}) for the formation, and it is unique up to isomorphism.

Theorem 1.3. Let (U, g,{fr}) be a Weil group for a class formation (U,Gg, A). For each field F,
the composed map

ab
9r

f a a
3) Ap T2 U 2 o

is the reciprocity map, where g%b is induced by g.
Moreover, if every normal layer K/k there is a cyclic L/k of the same degree, then in the
definition of Weil group for a class formation, we can substitute the above condition for (c) of

definition [1.5
2. LocAL LANGLANDS CORRESPONDENCE FOR TORUS

This section mainly follows the original paper of R.P.Langlands 7] and paper by J.P.Labesse [§].
The structure (dividing proof into three parts, and preparations) follows the relevant materials in
[5]. And the article [6] gives me some help for understanding some details in the original paper.

2.1. Some Preparations.

2.1.1. Some definitions. Let K be an algebraic number field, let Sk denote the set of prime divisors,
Sw the set of infinite prime divisors. Assume S is a finite subset containing S, we define:

Ags=]]E. x[]Ov
vES V¢S

and give Ak s the product topology. We call Ax s the ring of S-adéles.
And define the ring of adéles of K to be: Ak := li_r)ns Ags.
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We know (see [II] Chapter II and Chapter VIII) the following facts: A is locally compact;
Ak (S) are all open subsets of Ag; if L/K is a finite Galois extension, then Ay ~ Ax ®x L.

Now we define idéle group of a global field K:

Let S be as above, define group of S-idéles:

Jrs = [ K x[]Us

ves vgS

where U, is group of units in K, and give it the product topology.
The idéle group Jx is defined to be Jg := li_n}S Jr,s. K> is discrete in Jg.
We define idéle class group of Ck to be Jx/K*.

2.1.2. Complements on group cohomology. We have known terminology for finite group cohomology
from [10] chapter VII. Since we have defined class formation, we add a few more terms:

Let K/F be a Galois extension of field F, G = Gal(K/F), {E} denotes the set of all finite galois
extensions of F', Gg is the subgroup of G fixing E. ((G,{Gg}, K) is a formation.)

The action of G on K* makes it into a G-module, since (K*)“® = E*  we know K* =
(UE*.(K* is discrete G-module) Further, E* is G/Gg-module, we have:

HL(G,K™) =lim H"(G/Gg, E™)
E
where H, is defined using continuous cocycles.
We also have Hilbert 90 for our case:

Theorem 2.1.
Hgt(G,KX) =0

The proof is similar to finite case, then pass to limit.

2.1.3. A Commutative diagram. In the following of this subsection, we fix an exact sequence:

1 c—sw-—5a 1
where C' is normal subgroup of W, and any G-module is viewed as a W-module through j, also a
C-module with trivial C-action.
For 1-cycle x : a — z(a) of C on A, we define the corresponding 1-cycle of W on A by trivial
extension. For 1-cycle of W on A x : w +— x(w), we define the corresponding 1-cycle on G:

o 2 x(w)

j(w)=o

By explicitly computation of cycles, we have:

Proposition 2.2. The following sequence is exact.

(4) Hi(C,A) —— H{(W,A) —— Hi(G,A) —— 0

There is an important result concerning the composition of Cor : Hy(C,A) — Hy(W,A) and
Res: H (W, A) — Hy(C, A), and the Ng map.
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Proposition 2.3. The following diagram commutes:

Hy(C,A) — s H(W, A)

(5) JNG JRES

Ng(H1(C, A)) —— Hi(C, A)
Proof. From the exact sequence:
(6) 0 —— Ig — Z|IG] ——Z —— 0
where € : Z[g] — Z defined by > n,0 — > n,. We tensor it with a Z-free G-module, and using
homological sequence, we have:
Hi(G,A) = Ho(G, Ic ®A) = Ic®A
For G replaced by W, we have Hy(W, A) — Ho(W, I, ® A), similarly for C.

We will mainly work with the following diagram:

Hy(C,A) —S s Hy (W, A) —— Ho(W, Iy Q@ A))

e [ [

0 —— Ng(H{(C,A)) —— H1(C,A) —— Hy(C, Iy ® A)

We already know that the right square is commutative,
If z : w— z(w), zis 1-cycle of W in A, then its image in Ho(W, Iy ®A) is Y, (w™'—1)(1®z(w)),
its restriction to C' is:

DD (wew ™ 1@ z(w)) — we (1 @ z(w)))
We have relation: w,w = c¢; Wy, then above sum is:
D e — Dw(1 @ 2(w))

which equals to:

Z ((c_1 -1 Z 1 ®w71’(w)>
ceC Crow=C
this is homological class of the following 1-cycle in H1(C, A):
y:ce Z wrx(w)
If support of z is in C, then:
ye) = D, wea(b) = Y et (e) = ) Ta(c)
wobwy  =c T o

So diagram [f] commutes. O
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2.1.4. Cup Product. There are some dual theorems due to Tate and Nakayama (see [I0] IX section
8 and XI ANNEXE), of most interest to us is the explicit calculations of cup product:

From now on till the end of this document, H is used to denote the Tate cohomological groups.
Proposition 2.4. Let A, B be G-modules.
(1) Forae A%, let f,: B— A® B be G-morphism given by b a ®b, then cup product:

H(G,A)® H*(G,B) — H"(G, A® B)
is given by:
[a] v [z] = fa([=])

where [a] denotes the class of a, [x] € H"(G, B).
(2) Cup product:

HY(G,A)®@ HY(G,B) - H°(G,A® B)
is induced by:

[Flob] =[] flo)®ab]
oeG
where b € B satisfies Nob =0, f is 1-cocycle.

(8) Cup product:
HYG,A)® H*(G,B) —» H (G, A® B)
is induced by:

[flulz] =[] flo)®x(0)]
ceG
(4) Cup product:

H2(G,A)® H*(G,B) - H°(G,A® B)
is induced by:

[z]u[f1=1[ )} 72(0) ® f(7,0)]

o, 7eG
Assume A is a free G-module, @Q is a trivial G-module, then the above (3) gives a pairing:
H'(G,Hom(A,Q)) x Hi(G, A) - Hy(G,Q) = Q
therefore we have a morphism:
(7) ®: H'(G,Hom(4,Q)) — Hom(H:(G, A),Q)
Proposition 2.5. If Q is Z-injective, then ® above is an isomorphism.

Proof. See [7] p11-12 or [5] part 3 proposition 1.3.8.. O
Proposition 2.6. If G is a finite group, C is a class module, w € H?(G,C) is a fundamental class,
1 c—»w-—-_5¢a 1
is a group extension belongs to class u. Assume A is a Z-free G-module, Z = Ker (Ng : H1(C, A) —» H,(C, A)),

then the following is exact:

(8) 0 —— Z —— H{(C,A) —— H(W,A) —— H1(G,A) —— 0

Proof. See [7] p12-13 or [5] part 3 proposition 1.3.8.. |
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2.1.5. Galois Cohomological Groups of multiplication groups and unit groups of local fields. In this
subsection, let us use F to denote the completion of a number field at a finite place v, F is the
algebraic closure of F. We use O, Up, Pr to denote O,, U,, P,. We first check the axioms of
class formation are satisfied.

Let K/F be Galois extension of degree n, G = G/, assume H is subgroup of G of order m,
from Hilbert 90 we have H'(G,K*) = 0. Assume F' is invariant field of H, then H = Gk/rr-
Then H?(H,K*) is cyclic group of order m generated by ux /- By calculations:

1 1

Invp (Resug/p) = [F': FlInv(ug/p) = [F': F]ﬁ == Inv g (ugc/pr)

‘We have:

9) UK/Fr = ReS(UK/F)

we know that G-module K* is a class module with ug /p as its fundamental class. We can now use
Tate-Nakayama to get:

Theorem 2.7. For all n € Z, morphism given by cup product o — o U ug p s an isomorphism
from ﬁ"(CLZ) to ﬁ"*z(G, K*). Further, we have commutative diagram:

(G, 7) =5 B 2(G, K)
(10) CorIRes CorIRes

vu

H™(H,7) —=5 An+2(H, K*)

Proposition 2.8. Let K/F be finite Galois extension of Local field F, with Galois group G, then
(1) there exists an open subgroup V' of Ug such that ﬁ”(G, V)=0, VneZ.

(2) If the extension is unramified, then H"(G,Uk) = 0, Vn € Z.

Proof. See [11] Chapter IV. O

Now we do some calculations:

Proposition 2.9. If F is nonarchimedean local field, K/F is unramified Galois extension, G =
G(K/F). If A is a finitely generated Z-free module and at the same time a G-module. Then the
norm morphism induces a surjective morphism:

NG : HOIH(A7 UK) - Homg(A, UK)

Proof. Forn = 1,1let U} = {x € Ux | x =1 mod P}, they are all G-invariant. We only need to
verify:
Ng : Hom(A, Uk /U) — Homg(A, Uk /Us)

Ng : Hom(A, U /U — Homg (A, Up /Ut
are surjective.
Let kx = Ok /Pk be the residue field of Ok. U}Q/U}éﬂ =~ ki as G-module. Then we consider:

NG : HOHl(A, kK) e HOIHG(A,]CK)
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Assume kp = Op/Pp, then kr is isomorphic to Z[G|®kr as G-module. And Hom(A, Z[G|®kFr) =
Z|G] ® Hom(A, kF), so
H°(G,Z[G] ® Hom(A, kr)) = 0
that is to say, Ng is surjective.
Uk /Uj as G-module is isomorphic to k. We consider:
N¢ : Hom(A, ky) — Homg(A, k)

we want to show H°(G, Hom(A, kfr)) = 0. Since G is a finite cyclic group and Hom(A, k) is finite,
so all H?(G,Hom(A, kj.)) have the same order. We shall prove:
HY(G,Hom(A, k})) =0

Let kg be the algebraic closure of kg, F is the subgroup of Gal(kx /kx) generated by the Frobenius
automorphism oq : x — z!¥%|_ then the following sequence is exact:

0 —— H'(G,Hom(A, k})) — H'(F,Hom(A,kp))

Then we only need to show H!(F, Hom(A%?)) = 0, that is to say, for any 1-cocycle f of F, there
is a ¢ € Hom(A, k) such that f(o¢) = oop — ¢. It is done by linear algebra. See [7] p17.
(|

2.2. Weil Group and L-Group. First give some definitions:

O — idéle class group if K algebraic number field
7 Kk~ if K Local field

Now we have a special case of Weil group for our use:

(Weil group, special case) If F is local or global field, K/F is Galois extension with Galois
group Gg /. (G,GF,C) be a class formation from knowledge of class field theory. Then Weil group
is defined in has its form as an extension of G, through Ck:

9

0 Ck

W/ SELEN Gk/rp ——>0

such that its factor set is a fundamental class u € H*(G g /p, Ck ).

Now we assume that F' and F” are local fields or global fields, with K (resp.K’) Galois extension
of F (resp.F"), ¢ is isomorphism from K to K’ which maps F to F'.

Moreover we add some conditions: if we require F' and F’ to be simultaneously local fields or
global fields, we require F’ to be separable over image of F; if F is global but F’ is local, then
require F’ to be separable over the closure of image of F.

Under these conditions, for ¢ we can associate a homomorphism:

ow  Wgp — Wgp
Therefore for discrete G i) p-module A, we can associate a morphism of cohomological groups:

(11) oty Hy (Wi, A) = Hy (Wi ypr, A)

2.3. L-group of torus. Assume F' is local field or global field, T is an algebraic torus defined
over I' and splits over Galois extension K, X(T) is Gk p-module formed by characters of T'. Let
X (T) = Hom(X(T),Z)
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2.4. L-homomorphisms from Weil Groups to L. We consider continuous homomorphism ¢ :
Wkir — LT such that the following diagram commutes:

Wi /p L4 Lp

Gk/r

For two continuous homomorphism ¢ and ', if exists a t € “T%(C) such that ¢(w) = t~ 1o (w)t, then
we say that ¢ and ¢’ are isomorphic. Denote the set of equivalence class of such homomorphism
o(T).

If we denote p(w) = (a(w), j(w)), where a(w) € “T°, then w — a(w) is continuous 1-cocycle
from Wi /p to ET0 We have

(12) th (W xo)t=t" -t Ttxo (¢t e"TY)
Therefore, p = ¢’ if and only if a@ and a’ represent the same cohomological class. We have:
®(T) = Hey(Wie/p, “T°)

2.5. Unramified equivalent class of homomorphisms. If F is a local field, if element [p] €
®(T) such that @|mertia Group is trivial, we call [¢] is unramified, we use Py, (7)) to denote all
unramified elements of ®(7T).

If moreover, K/F is assumed to be unramified, then G p is generated by Frobenius automor-
phism 0. Unramified ¢ is determined by (1 x o) = ¢ x o completely, where t € LT is determined
up to conjugation. Therefore in this case we have:

(13) Bune(T) = (*T° % ¢)/Int LT°

where Int T represents conjugation group with respect to Lo,

3. REPRESENTATION AND LOCAL L-FUNCTION

3.1. Representation of Torus. If F is a local field, T(F') is locally compact Abelian group. From
Schur’s Lemma, we know that: Irreducible representations of T'(F') in a Hilbert space are characters,
that is to say, continuous homomorphisms T'(F) — C*.

For K a global field, from exact sequence:

1 KX JK Ck 1

we derive an exact sequence:

1 T(F) T(Ap) — Homg, . (X(T),Cx) — Hl(GK/F,T(K))

Therefore Cr(T) = T(Ar)/T(F) can be seen as subgroup of Homg, . (X(T),Ck), to study
representations of T'(F) (F local field) or representations of T(Ar)/T(F) (F global field), we need
to study the following group:

I(T) = Homy (Homg, . (X(T),Ck),C*)

Remark. We can also consider the character taken values in complex numbers of absolute value 1,
see [9] Chapter 1 Section 8.
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3.2. Torus Theorem.
Theorem 3.1. There exists a canonical isomorphism:
O(T) = TI(T)
And its improved version:

Theorem 3.2. (1) If F is a local field, then H},(Wg p, L1 is canonically isomorphic to charac-
ter group of T(F).

(2) If F is a global field, then we have a canonical homomorphism from H&t(WK/F,LTO) to char-
acter group of T(Ap)/T(F), with finite kernel, and formed by the following class a: when K’
is the completion of K with respect to some valuation, we have @3, (o) = 0, where F' is the
algebraic closure of F in K', ¢ : K/F — K'/F’ is an embedding.

3.3. Equivalent classes of unramified homomorphisms and characters. For this subsection,
we fix: T is a torus defined over a nonarchimedean local field, and splits over unramified extension
K/F with Galois group Gg/r, let 0 denotes the Frobenius automorphism of G g /p.

If a character is trivial over T(Or) = Homg, ,.(X(T'), Uk ), then it is called unramified. The set
of unramified characters of T'(F') is denoted as @y, (7).

The exact sequence:

v

0 Uk Ck Z 0

where v(a) = 1 if and only if a generates prime ideal Px. As Gk p-module it splits and leads to
the following exact sequence:

0 —— Homg, . (X(T),Ux) —— Homg,,.(X(T),Cx) — Homg, . (X(T),Cx) — 0
We immediately have:

Lemma 3.3. If the character of Homg,,.(X(T), Cx) = T(F) is trivial on Homg, . (X(T),Uk) =
T(Or), then it is character of Homg,,. (X(T),Z) = X4 (T)9%/7 | and is contained in Hom (X (T), Z)
X«(T).

Using the above notations, we can describe the corollary of Theorem [3.2] (1).

Corollary 1. (1) x € I(T) is unramified if and only if its related element [f] € HY (W p, L0y
is the lifting of the following:

H(}t(Z7 LTO) - H(}t(WK/Fa LTO);
this lifting is induced by the following exact sequence:

where p satisfies the following conditions: u(w) = 1 implies j(w) = op.
(2) Besides, if x extends trivially to a character of X4(T) and pu(wo) = 1, then for A € “T°(C) we
have
flwo)(A) = x(X)
(3) Isomorphism ®(T) =~ II(T) induces bijection between W yn, (T) and Wyn, (T).
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4. PROOF OF THEOREM [3.2]

To simplify notations, in this section @ we shall use C', W, G to denote Cx, Wk/p, Gk/p-
Therefore we have an exact sequence:
0 c—»w-—-5a 0
and we can choose right coset representatives of C' in W :{w, | o € G}, for fixed o, 7 € G,
Jcq,r € C such that:

WoWr = CorWor,s

and the fundamental class u € H?(G, C) is 2-cocycle of ¢, ;.

4.1. Step 1:H,(C, X, (T))¢ = Homg(X(T), ).

Theorem 4.1. Prove that there is a G-isomorphism.:

(14) Hi(C, X4(T))% = Homg(X(T),C)
Proof. From cup product:

(X(T), Xu(T)) = Z, {\X)=A(N)

we get a bilinear morphism:

H°(C,X(T)) x Hi(C, X+((T))) - H1(C,Z)
it commutes with the action of G on these three groups. Since H°(C, X (T)) and H,(C,Z) are
isomorphic to X (T') and C as G-modules, we have isomorphism

(15) H,(C,X4(T)) - Hom(X(T),C)
From Proposition 1.3.7, it maps 1-cycle y to the class of the following homomorphisms:
(16) A — H E™yle))

ceC

Since X (7)) is direct sum of Z, this is an isomorphism.

4.2. Step 2: H{(W, X, (T)) = H,(C, X (T))“.
Theorem 4.2. The transform from W to C leads to an isomorphism:
(17) Hy(W, X4 (T)) = H1 (C, X,(T))"
Proof. From definition we know that:
Hy(C, X4 (T))9/Ne(Hi(C, Xo(T))) = H(G, Hi(C, X4(T)).
Using isomorphism [I5] we have an exact sequence:
(18) 0 —— Ng(H,(C,X4(T))) —— Hy(C, X4 (T))¢ —— fIO(G,Hom(X(T),C)) — 0
From we have exact sequence:

(19) 0 —— Z — Hi(C,X(T)) — H(W,Xx(T)) — H1(G,X«(T)) —— 0
where Z = Ker (Ng : H1(C, X«(T))) — H1(C, X« (T)).
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We have an obvious isomorphism:
(20) X4(T)® C = Hom(X(T),C)
It maps X@ ¢ to morphism A — c<’\’3‘>, with respect to this pairing, we have cup product:
H\(G, X,(T)) x H*(G,C) —» H*(G,Hom(X (T),C))

According to Tate-Nakayama Theorem, cup product with fundamental class u € a2 (G, C) gives an
isomorphism:

(21) E: Hi(G, X4(T)) = H(G,Hom(X(T),C))
According to proposition this morphism maps 1-cycle z of G in X, (T) to class of homomorphism

(22) A H AT

If we combine exact sequences and isomorphism [21], we get a commutative diagram:

0

l

00— 72— Hi(C,X4(T)) ——— H{(W, X4(T)) ———— Hi(G, X4(T)) ———— 0
(23) JNG chs lE
0 —— Ng(H1(C, X4(T))) — Hy(C, X4(T))¢ —— H°(G,Hom(X(T),C)) — 0

| |

0 0

The commutativity of left block is from proposition [2.3

Fixing a 1-cycle of W in X, (T), = : w — z(w), for 7 € G, s € W, exists a unique element c¢; ,,
and unique o € G such that w,w = ¢, w,. From the proof of proposition Res(x) is the 1-cycle
class of the following;:

y:c— Z wrz(w)

from this cycle’s image in ﬁO(G, Hom(X (T),C)) is the class formed by:
(24) A [ [ euermtwn

If w= cw,, ce C, then ¢, = chw;lcT,c,, therefore this product equals to

{ n (wTC,wT—l)<A,w.rw(cwa)>} { H Cgr?&wTw(ch))}

o,T,C o,T,C
First product is a norm, this means if we let:
z(o) = Ex(cwg)
(&

Then homomorphism [24] have the same cohomological class as:

(25) A n AT
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But z is the image of x under the following homomorphism:
Hy (W, X (T)) — Hi(G, X«(T))

However from E(z) is the class of so we have proved the commutativity of right square
of 23] Therefore by snake lemma, we know [I7]is an isomorphism. O

4.3. Step 3: HL(W,LT%) = Hom(H, (W, X4(T)),C*).

Theorem 4.3. The pairing associated to valuation map (t,\) — A(t) (t € “T°, Xe X4 (T))
Hey (W, T°) x Hy(W, X(T)) — C*

leads to an isomorphism:

(26) Hoy (W, "T°) = Hom(Hy(W, X(T)),C*)

Proof. We already have Hy(W, X4 (T)) isomorphic to Homg (X (T'),C), this isomorphism can be
used to transform H; (W, X, (T)) into a topological group.
Because C* is Z-injective, from proposition we have isomorphism

@ : HY(W,LT%) = Hom(H (W, X4(T)),C>)

To prove we only need to prove ®([f]) is continuous if and only if f is a continuous cocycle.
Let U denote the set formed by elements of norm 1, then we have exact sequence:

1 U C M 1

where M is Z or R, G acts trivially on it, this sequence splits as an sequence of Abel groups,
and the following is exact:

0 —— Hom(X(T),U) —2— Hom(X(T),C) —“— Hom(X(T), M) — 0
Proposition 4.4. We have an injective morphism:
¥ : (Ng(Hom(X(T),C)) n Hom(X(T),U))/Ng(Hom(X (T),U)) —
H~Y(G, Hom(X(T), M))/uH (G, Hom(X (T), C))
Proof of this proposition:

Proof. If z = Ngxz € Hom(X(T),U), x € Hom(X(T'),C), and y = p(x), then Ng(y) = Ng(u(x)) =
w(Ngz) = 0. Thus we define the morphism 1 to be the map sending z to the quotient image 7 of
y on the right hand side. This is well defined: if « has value in Hom(X (T),U), it is 0. If z and 2’
satisfy Nga = Nga', we have  — 2’ = r, so r € Hom(X (T),U), pu(z) = p(z') + p(r) = p(z’).

Injectivity: We need to show that if ¢)(z) = 0 for z = Ngz, and € Hom(X(T), Ck), then
3z’ € Hom(X (T),U) such that Ngx = Nga'.

If the image is 0, since y € I Hom(X (T'), M), we can choose z such that y = >, (07 vy — v,)
for v, € Hom(X(T), M), let u, be the elements in Hom(X(7T'),C) such that u(u,) = v,, then

-1

¥ =z-Y% (67 uy —uy) € Hom(X(T),U) and Ngz = Nga', u(z') = p(z) = 0. O
Now we can show Ng(Hom (X (T'),C)) is closed in Homg(X (T), C).
Case 1:

Since we have Hom (X (T),U) = T(Ok) = (Ug)? where d is rank of lattice X (7), it is compact.
Note Ng is a continuous map, so Ng(Hom(X(T),U)) is compact subgroup of Hom(X(7T),U),
thus closed in Hom (X (T'),U), hence in Ng(Hom (X (T'), C)) n Hom(X(T),U). And since the above
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Proposition gives injectivity of ¢, we know Ng(Hom (X (T),U)) is of finite index in Ng(Hom(X (T),C))n
Hom (X (T),U), so Ng(Hom(X(T'),C)) n Hom(X(T),U) is closed in Hom(X (T'),U)
Except for K archimedean or global, we have Homg (X (7T'),U) is open in Homg (X (T'), C), and

Ng(Hom(X(T),C)) nHomg(X(T),C) = Ng(Hom(X(T)),C) n Hom(X(T),U)

is closed. From knowledge of topological groups, we know Ng(Hom (X (T'), C)) is closed in Homg (X (T'), C).
It is also open because M discrete.
Case 2:
In the archimedean or global field case,

1 U C M=R>" ——1

splits as a G-module, we have the following split exact sequence:
0 —— Hom(X(T),U) 2, Hom(X (T),C) —£— Hom(X(T), M) — 0

So we have
(27) Hom(X(T),C) = Hom(X(T),U) x Hom(X(T), M)

and
Ne(Hom(X(T),C)) =~ Ng(Hom(X(T),U)) x Ng(Hom(X (T), M))

We also have:

Homg(X(T),C) = Homg(X(T),U) x Homg(X(T'), M)
Since M = R> is divisible, we have H°(G, Hom(X(T), M)) = 0, which means:

N (Hom(X (T), M)) = Home (X (T)), M)

Combined with the fact that Ng(Hom(X (T),U)) is closed in Homg (X (T'), U), we see Ng(Hom (X (T'), C))
is closed in Homg (X (T'), C).

It is also open in it because Ng(Hom (X (T'),U)) is of finite index in Homg (X (T),U). Now we
have: for ¢ € Homg(X(T),C), it is continuous if and only if ¢ o N¢ is continuous.

We have the following lemma which can be proved easily:

Lemma 4.5. A 1-cocycle x of HY (W, LT is continuous if and only if its restriction to H*(C, LT0)
18 continuous.

The following diagram is commutative:

HY(W,*T%) —=— Hom(H, (W, X4(T)),C*)
lRes Cor
HY(C,'T%) —— Hom(H,(C, X,(T)),C*)
where Cor is induce by Cor : Hy(C, X4(T)) — Hy(W,X.(T)). [f] € Z'(C,*T°) under the

bottom morphism F is the map sending A ® a € Hom(X,(T) ® C,C*) =~ Hom(H;(C, X.(T)),C*)
to (A, f(a)), this is continuous.
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4.3.1. Proof of Theorem[3.4 (2). This part, I mainly follow [9] Chapter 1 Section 8 and [8].
Here are some preparations:
Let F' be a global or local field, and let K be a finite Galois extension of F'. Let M be a finitely
generated torsion free G i p-module, then we define:
M’ := Hom (M, C*)
(28)
M := Hom(M,C*)

They are again G p-modules, we regard these groups as Wy p-modules. If we write Wy p =
| |wyCk as union of disjoint left cosets. As constructed in [8] section 3, we define:

Cor : HY(Ck, M) — Hl(WK/FaMT)

as the map sending o : Cx — MT to map Cor(a) : Wi /p — M such that

(Cor(a))(w) = Z wga(w, 'wwy ),  where wwy = wymod Cx

geG

From definition of Weil groups let (G,Gr,C) be a class formation, if we let Gk denote an
open normal subgroup of finite index of G, Cr = C%. then we have:

9

0 Cx Wi /r —— Gg/r 0

And it corresponding to the canonical class u € H? (Gk/r,Ck).
For any Wi p-module M, the Hochschild-Serre spectral sequence gives an exact sequence:

0 —— HYGgp, M"Y 25 H' (Wie)p, MT) B HY(Cg, MY)Cxir —T s H*(G g/, M)

we can make the last morphism 7 (called the transgression) explicitly in our case:
Lemma 4.6. If Cx acts trivially on M, then the transgression
T HY(Cx, MN9%i7 — H*(Gg/p, M)
is the negative of the map — U u induced by the pairing
Hom(Cx,M) x Cx — M

Proof. Write Wy /p = |_|g Crwgy, and let wywy = ¢g gwge. Then (cg4) is a 2-cocycle representing
u. Let a € Homg, . (Ck, M) and define B(cwy) = a(c), c € Ck. Then

dB(g,d') := dB(wg, wy)
(29) = gB(wy) — Blwgwg ) + Bwy)

= —a(cg,q)

which equals —(a U u)(g,9").

Lemma 4.7. The corestriction map Cor : H*(Cg, MT) — H*! Wk /r M) factors through H'(Cg, M)

Gg/F-
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Proof.
Cor(ha)(w) = ngwha(wglwglwwglwh)
g
where ¢’ is such that wwy = w, mod Ck. w(wywy) = (wywp) mod Cg. Therefore the class of
Cor(ha) is the same as that of Cor(a), so Cor((h — 1)a) = 0 in H (Wg,p, MT). O

Lemma 4.8. The composite
HY(Ce, M) -2 HY (Wi )p, MT) S HY(Cx, MT)

is equal to Ng.

Proof. When w € C, for a € Z'(Cg, MT) and w € Wk /Fs
Cor(a)(w) = Y, ga(g~'wg) = (Nga)(w).
g

O
Theorem 4.9. For any finitely generated torsion free Gk p-module M, the corestriction map

defines an isomorphism:

® : Hom(Cg, Homs (M, C*)) = H,(Wk r, Home, (M, C*))

Gk/r
Proof. Write G in short for G/ p. First proof that the corestriction defines an isomorphism
Hom(Cre, M) — H' Wi/, M)

and then shows that is makes continuous homomorphisms correspond to continuous cocycles.

Gk/F

0 —— H~Y(G,Hom(Cx, M) —— Hom(Cx, M1)e —2% Hom(Cx, M1)¢ —— H(G,Hom(C, M)

(30) - Jco ol -

00— HYG, MY — 0 B (Wy)p, MY) B HY (O, MG —————— H?(G, M)

The horizontal line is the definition sequence of Tate cohomology groups, the bottom line is
Hochschild-Serre spectral sequence, the two vertical isomorphisms are consequences of Tate-Nakayama,
the third square commutes because of lemma The second square commutes because of lemma[4.8]
The first square commutes by explicitly calculating each maps, see [9] Lemma 8.7. By five lemma,
Cor in [30]is an isomorphism.

|

Next we show it makes continuous homomorphisms correspond to continuous:
The following is from [§] section 5 and [9] lemma 8.10.

Proposition 4.10. If D is an (real) abelian connected Lie group, equipped with an action of
G = Ggr (analytic) then the natural homomorphism:

H?(G,Hom,(Cr, D)) — H?(G,Hom(Cy, D))
is an isomorphism for all p € Z.

Proof. (a) K and F are local archimedean. The only nontrivial case is F' = R and K = C, here
Ck = C*, the exact sequence:

0 Z R? C* 0
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gives exact sequence:

0 —— Hom(C*, D) —— Hom(R?, D) —— Hom(Z, D) — 0

0 —— Hom(C*, D) —— Hom(R?, D) —— Hom(Z,D) —— 0

because D is divisible hence Z-injective and it is an abelian connected Lie group. From
Hom(C, D) and Hom(C, D) cohomologically trivial, we know that we can replace Cr with
Z which is discrete and it is obvious.

(b) F and K nonarchimedean local fields. If Ug the group of units of K>, we have K* /Uy = ¢%;
and if U} is the subgroup of units congruent to 1 module n-th power of maximal ideal, we
know from [I0] Chapter XII, section 3 that UL and U} /UR are cohomologically trivial for
all n if K/F is unramified. We know that if A is cohomologically trivial and D is divisible,
then Hom(A, D) is also cohomologically trivial. So Hom(Uj, D) and Hom (UL /U%, D) are
cohomologically trivial. Because

Hom(Ug, D) = lim Hom(Ug /U, D)

we know Hom,: (U}, D) is cohomologically trivial. So again we can replace Cx by K*/Uj
which is discrete. For the general case, replace UR by V3, where Vi is as in proposition @,
the proof is similar.

(¢) F global. Here Ck is the idéle class group. Define V < CF to be [[V, where V,, = @; for v
nonarchimedean prime that is unramified in K, and V,, is a subgroup as in above case for the
rest primes. It is therefore enough to prove the lemma for Cr/V. In the function field case,
this is discrete and in the number field case this is an extension of a finite group by R*. In
the first case it is done, in the second case by exponential shows that R* is the quotient of a
uniquely divisible group by a discrete group.

a

Now we have:

Corollary 2. The map:
Cor : Hom(Cg, D)% — Hclt(WK/F,D)
is bijective.
Proposition 4.11. If p € ch(WK/F,D) we say ¢ if not ramified is its restriction to Uk 1is trivial,
and we note H.,,.(Wg p, D), which by the proof of proposition is isomorphic to Hom(Z, D)%.

And we also derive a lemma:

Lemma 4.12. If D is a compact group, then I Hom(Ck, D) is closed in Hom(Ck, D), equipped
with compact convergence topology.

Proof. In proposition [£.10] applied to p = —1, we have :
0 = Ker (ﬁrl(G, Hom,(Ck, D)) — H~Y(G, Hom(Ck, D))) -
(IG Hom(Cxc, D) [ Home: (Cr, D)) /I Home (Cre, D)
O

What we concern is D = M’ = Hom (X, (T'), C*), following [8] section 6, we separate it into two
cases: R and R/Z by the exact sequence
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0 Z R? C* 0

then conclude for C*.

Proposition 4.13. We have an isomorphism:

I: Homct(CK & M, CX)G - Homct (CK ® M)G7 CX)
Proof. Now suppose D = Hom(M, S) where M = X, (T) is a Z[G]-module which as Z-module is
free and of finite type, and S is a real connected abelian Lie group where G acts trivially on it.

Under this hypothesis, D is a connected abelian Lie group.
We have a natural isomorphism

Hom(Cx ® X4 (T),S) — Hom (Cx, Hom(X,(T), 5))

where Cx ® X4 (T') = C% (n is rank of X (T)), equipped with product topology.

Now first suppose S = R/Z, we see Hom.(Ck, D) is just the Pontryagin dual of Cx ® X.(T),
then we claim the orthogonal(in sense of topological groups) of the subgroup (Cx ® X« (T))¢ in
Ck ® X4 (T) is the closed subgroup

IG Homct(CK ®X*(T)7 S)

Now prove this claim by showing: for any o € G and any f € Hom(Cx ® X4 (T),5), (of — f)(a) =
fle™(a)) — f(a) =0 if a = o(a) (a € Cx @ X4(T)). So I Hom(Cx ® X«(T), S) is contained in
the kernel of the following restriction:

Hom(Cx ® X4(T),S) — Hom ((Cx ® X«(T))%, S)

Conversely, if a ¢ (Cx ® X4(T))%, there is a ¢ € G such that a # o(a), since Pontryagin dual
separates points, there is a f such that:

fle™(a) —a) #0

so (0 —1)f(a) # 0, the orthogonal of I¢ Hom(Cx ® X4(T'),S) is included in the orthogonal of
the kernel. And we conclude by lemma [4.12
When T' = R, notice that homomorphism to R is trivial on compact subgroups, we have:

Hom, (Cx ® X4(T),R)¢ = Hom(X4(T),R)¢ = Hom(X4(T)%, R) = Hom ((Cx @ X«(T))%,R)
O

We have another version of this result, in [9] corollary 8.11. We don’t prove it since it is not
needed in our use.

Theorem 4.14. Let F be a global or local field, and let M be a finitely generated torsion free
Gr-module, there is a canonical isomorphism:

Hom,,((C ® M)Sr,C*) = HL,(Wp, Hom. (M, C*))
where C' = |JCp.

Now Let’s prove (2) of theorem
Recall that, in we have:

I —— T(F) — T(Ap) —— Homg,.(X(T),Cx) — HY(Ggr,T(K))
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(Note that (X4(T) ® Ck )¢ =~ Homg(X(T),Ck).) We have a surjection with finite kernel:
U : Home ((X4(T) ® Ok )¢, C*) — Homy (T(Ag)/T(K)),C*)

Then precompose it first with isomorphism I' in proposition [£.13] then precompose it with isomor-
phism &' gotten from Theorem taking M = X, (T):
We get a surjective map WoI o ®d~ 1

Hey(Wijp, "T°) — Home(T (A ) /T(K)), C)

Then the following diagram commutes:

HY(Wie/p, "T%) ——— Homy(T(Ak)/T(K),CX)

! |

HHclt(WK//F’a LTO) # HHomCt(T(K’),(CX)

we know that right vertical and lower horizontal map are injective, so we have the kernels of the

remaining maps are the same. The theorem is proved.
O

4.3.2. Proof of Corollary[]] (1), (2). Now we can prove Corollary [1] (1), (2):
Note that T is torus defined over a nonarchimedean local field F', splits over unramified extension
K/F

Proof. There is an exact sequence:

0 U w57z 0

such that p(w) = 1 if and only if the transfer of w € C generates the prime ideal Pk. Since the
norm morphism:
N¢g : Hom(X(T'),Ug) — Homg(X(T),Uk)
is surjection by proposition 2.9 we see that under the isomorphism:
Hi(W, X, (T)) = Homg(X(T),C)

H,(Ug, X4(T)) corresponds to Home (X (T), Uk, so character associated with HZ (W, *T°) is un-
ramified if and only if it is the lifting image of the following:
(31) HY(Z, 2T — HL,(W, “1°)

where the action of Z on “T° is determined by action of W. This proves (1).
If X is an invariant element of X, (T'), w € W, then exists z, 1-cocycle of W in X, (T') such that
z(w) = A, and when u # w we have z(u) = 0. The class of z in Hom(X (T), C) is the morphism:

) A= T
Note that [ [ ¢r is just the transfer(also called Verlagerung) of w. Recall the exact sequence:

0 U C —>17 0
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We apply v to above and get:
(33) A= O p(w) V)

which is in Hom(X(7),Z). If x is unramified, then is a 1-cocycle f of Wy p with values in Lo
whose lifting is the image of map I} so for the corresponding homomorphism [33] is given by
A€ X, (T)¢ and one w € W such that u(w) = 1. And:

fw)(A) = x(A)
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