SOME NOTES ON LOCAL LANGLANDS CORRESPONDENCE

CONTENTS

1. Weil Groups

For this section, reference is [\[1\]](#page-22-1) and the article number theoretic background by J.Tate in [\[2\]](#page-22-2).

The language of class formation is axiomatic approach to handle local and global class field theory. For example, when K is a finite algebraic number field, the formation module A can be K^{\times} , idèle group of K or idèle class groups of K.

Let G be a topological group,

Definition 1.1. A formation $(G, \{G_F\}; A)$ consists of:

- (1) A group G, together with an indexed family $\{G_F\}_{F \in \Sigma}$ of subgroups of G satisfying the following conditions:
	- (a) Each element of $\{G_F\}$ is of finite index in G.
	- (b) Each subgroup of G which contains a member of the family $\{G_F\}$ also belongs to the family.
	- (c) The intersection of two members of the family $\{G_F\}$ also belongs to the family.
	- (d) Any conjugate of a member of the family $\{G_F\}$ is also a member of the family.

Date: November 21, 2020.

(e) The intersection of all members of the family $\{G_F\}$ is the identity:

$$
\bigcap_{F \in \Sigma} G_F = 1
$$

(2) A G-module A such that $A =$ $F \in \Sigma^{A^{G_F}}$, in other words, such that every element of A is left fixed by some member of the family $\{G_F\}$.

We call the submodule $A_F := A^{G_F}$ in (2) above the F-level. The index $(G_F : G_K)$ which is finite by assumption is called the degree of the layer K/F and is denoted by $[K : F]$. The layer is called a normal layer if G_K is a normal subgroup of G_F . The factor group G_F/G_K is called the *galois group* of the normal layer. Fix notation: $H^r(K/F) := H^r(G_F/G_K, A_K)$, and $H^2(*/F) := \underline{\lim}_K H^2(K/F)$ where K/F normal.

If moreover, the following axioms are satisfied, then the formation is called a class formation. **Axiom 0:** In each cyclic layer of prime degree, the Herbrand quotient $h_{2/1}$ is defined and equal to the degree.

Axiom I: (Field Formation Axiom) $H^1(K/F) = 0$ for all normal layer K/F .

Axiom II: For each field F, there is an isomorphism $\alpha \to \text{Inv}_F \alpha$ of the Brauer group into \mathbb{Q}/\mathbb{Z} , such that:

(a) If K/F is a normal layer of degree n, then image of $H^2(K/F)$ is $\frac{1}{\epsilon}$ $\frac{1}{n}\mathbb{Z}/\mathbb{Z} \subset \mathbb{Q}/\mathbb{Z}.$

(b) For each layer E/F of degree n we have

$$
\text{Inv}_E \operatorname{Res}_{F,E} = n \operatorname{Inv}_F
$$

Let us assume $(G, \{G_F\}, A)$ is a class formation, $H^2(K/F)$ is isomorphic to $\frac{1}{n_0}\mathbb{Z}/\mathbb{Z}$, any rational number t which can be written with denominator n determines a unique $\alpha \in H^2(K/F)$ such that Inv_F $\alpha \equiv t \pmod{\mathbb{Z}}$, this α is called the cohomology class with *invariant t*. If we are working with a complex X for the Galois group $G_{K/F}$ of the layer, and $f: X_2 \to A_K$ is a cocycle in the class α , call f is a cocycle with invariant t. The class with invariant $1/n$ generates $H^2(K/F)$, it is called fundamental class of layer K/F , cocycle f representing it is called a fundamental 2-cocycle.

Definition 1.2. (Weil Group for a normal layer) Let K/F be a normal layer in a class formation. A Weil group $(U, g, \{f_E\})$ for the layer K/F consists of the following objects:

- (1) A group U.
- (2) A homomorphism g of U onto the Galois group $G_{K/F}$. And define for each intermediate field $F \subset E \subset K$, the subgroup $U_E = g^{-1}(G_{K/E})$.
- (3) A set of homomorphisms $f_E: A_E \cong U_E/U_E^c$ of the E-level onto the factor commutator group of U_E , one for each intermediate field.

such that $(U, g, \{f_E\})$ satisfying:

(a) For each intermediate layer E'/E , $F \subset E \subset E' \subset K$, the following diagram is commutative:

$$
\begin{array}{ccc} A_E & \stackrel{\cong}{\longrightarrow}& U_E/U_E^c\\ \left.\begin{matrix} \downarrow & & \downarrow_{V_{E'/E}}\\ A_{E'} & \stackrel{\cong}{\longrightarrow}& U_{E'}/U_{E'}^c\end{matrix}\right. \end{array}
$$

where horizontal isomorphisms are induced by f_E , $f_{E'}$, left vertical is inclusion map and right vertical arrow is the group theoretic transfer (Verlagerung, see [\[1\]](#page-22-1) Chapter XIII or Serre Chapter VII) from U_E to $U_{E'}$.

(b) Let u be an element of U and put $\sigma = g(u) \in G_{K/F}$. Then it is clear that $U_E^u = U_{E^{\sigma}}$. Then the following diagram is commutative:

$$
\begin{array}{ccc}\nA_E & \stackrel{\cong}{\longrightarrow} & U_E/U_E^c \\
\downarrow \sigma & & \downarrow u \\
A_{E^{\sigma}} & \stackrel{\cong}{\longrightarrow} & U_{E^{\sigma}}/U_{E^{\sigma}}^c\n\end{array}
$$

where the right vertical arrow is the map of the factor commutator groups induced by conjugation by $u: U_E \to uU_Eu^{-1} = U_{E^{\sigma}}$.

(c) Suppose L/E is a normal intermediate level, $F \subset E \subset L \subset K$. Then the map g induces an isomorphism

$$
U_E/U_L \cong G_{K/E}/G_{K/L} = G_{L/E}
$$

Since $f_L: A_L \stackrel{\cong}{\to} U_L/U_L^c$, U_E/U_L^c can be viewed as a group extension of A_L by $G_{L/E}$ as follows:

(1)
$$
1 \longrightarrow A_L \cong U_L/U_L^c \longrightarrow U_E/U_L^c \longrightarrow U_E/U_L \cong G_{L/E} \longrightarrow 1
$$

The operation of $G_{L/E}$ on A_L associated with this extension is the natural one. Property (c) requires that the class of extension in [1](#page-2-0) is the fundamental class $\alpha_{L/E}$ of the layer L/E .

$$
(\mathrm{d}) \ \ U_K^c = 1
$$

Theorem 1.1. (Existence of Weil Group for normal layers)) Let K/F be a normal layer in a class formation. Then there exists a Weil group $(U, g, \{f_E\})$ for the layer K/F .

We can see that a Weil group for a big normal layer K_1/F_1 contains information about all intermediate layers K/F (see [\[1\]](#page-22-1) Chapter XV Theorem 3). This suggests the definition of Weil group for the whole class formation:

Definition 1.3. Let $(G, \{G_F\}, A)$ be a topological class formation. A Weil group $(U, g, \{f_F\})$ for the formation consists of the following objects:

- (1) A topological group U.
- (2) A representation g of U onto the dense subgroup of the Galois group G of the formation.
- (3) For each F of our formation, an isomorphism

$$
f_F: A_F \cong U_F/U_F^c
$$

where U_F^c denotes the closure of the commutator subgroup U_F .

In order to constitute a Weil group,
$$
(U, g, \{f_F\})
$$
 must have the following properties:

(a) For each layer E/F , then the following diagram commutes:

$$
A_F \xrightarrow{\cong} U_F/U_F^c
$$

\n
$$
\downarrow_V
$$

\n
$$
A_E \xrightarrow{\cong} U_E/U_E^c
$$

where V is the transfer map.

(b) Let $u \in U$ and let $\sigma = g(u) \in G$. Then it is clear that $u(U_E)u^{-1} = U_{E^{\sigma}}$, then the following diagram commutes for each E:

$$
A_E \xrightarrow{\cong} U_E/U_E^c
$$

\n
$$
\downarrow^{\sigma} \qquad \qquad \downarrow^{\mathcal{U}}
$$

\n
$$
A_{E^{\sigma}} \xrightarrow{\cong} U_{E^{\sigma}}/U_{E^{\sigma}}^c
$$

(c) For each normal layer K/F , the class of the group extension

(2)
$$
1 \longrightarrow A_K \cong U_K/U_K^c \longrightarrow U_F/U_K^c \longrightarrow U_F/U_K \cong G_{K/F} \longrightarrow 1
$$

is the fundamental class of the layer K/F .

(d) We finally requires that

$$
U \to \varprojlim U/U_K^c
$$

is an isomorphism of topological groups.

If k is the ground field, then U/U_K^c for variable K normal over k is the Weil group for the normal layer K/k .

For proofs of the following two theorems, please see [\[1,](#page-22-1) Artin-Tate] Chapter XV, theorem 7 and theorem 8.

Theorem 1.2. Suppose $(G, \{G_F\}, A)$ is a topological class formation satisfying the following three conditions:

(a) The norm map $N_{E/F}: A_E \to A_F$ is an open map for each layer E/F .

(b) The factor group A_E/A_F is compact for each layer E/F .

(c) The Galois group G is complete.

Then there exists a Weil group $(U, g, \{f_F\})$ for the formation, and it is unique up to isomorphism.

Theorem 1.3. Let $(U, g, \{f_F\})$ be a Weil group for a class formation (U, G_F, A) . For each field F, the composed map

$$
(3) \t\t A_F \xrightarrow{f_F} U_F^{ab} \xrightarrow{g_F^{ab}} G_F^{ab}
$$

is the reciprocity map, where g_F^{ab} is induced by g.

Moreover, if every normal layer K/k there is a cyclic L/k of the same degree, then in the definition of Weil group for a class formation, we can substitute the above condition for (c) of definition [1.3.](#page-2-1)

2. Local Langlands Correspondence for torus

This section mainly follows the original paper of R.P.Langlands [\[7\]](#page-22-3) and paper by J.P.Labesse [\[8\]](#page-22-4). The structure (dividing proof into three parts, and preparations) follows the relevant materials in [\[5\]](#page-22-5). And the article [\[6\]](#page-22-6) gives me some help for understanding some details in the original paper.

2.1. Some Preparations.

2.1.1. Some definitions. Let K be an algebraic number field, let S_K denote the set of prime divisors, S_{∞} the set of infinite prime divisors. Assume S is a finite subset containing S_{∞} , we define:

$$
\mathbb{A}_{K,S} = \prod_{v \in S} K_v \times \prod_{v \notin S} O_v
$$

and give $\mathbb{A}_{K,S}$ the product topology. We call $\mathbb{A}_{K,S}$ the ring of S-adèles.

And define the ring of adèles of K to be: $\mathbb{A}_K := \underline{\lim}_S \mathbb{A}_{K,S}$.

We know (see [\[11\]](#page-22-7) Chapter II and Chapter VIII) the following facts: \mathbb{A}_K is locally compact; $\mathbb{A}_K(S)$ are all open subsets of \mathbb{A}_K ; if L/K is a finite Galois extension, then $\mathbb{A}_L \cong \mathbb{A}_K \otimes_K L$.

Now we define idèle group of a global field K :

Let S be as above, define group of S -idèles:

$$
J_{K,S}:=\prod_{v\in S}K_v^\times\times\prod_{v\notin S}U_v
$$

where U_v is group of units in K_v , and give it the product topology.

The *idèle group* J_K is defined to be $J_K := \lim_{K \to \infty} J_{K,S}$. K^\times is discrete in J_K .

We define *idèle class group of* C_K to be J_K/K^{\times} .

2.1.2. Complements on group cohomology. We have known terminology for finite group cohomology from [\[10\]](#page-22-8) chapter VII. Since we have defined class formation, we add a few more terms:

Let K/F be a Galois extension of field $F, G = \text{Gal}(K/F), \{E\}$ denotes the set of all finite galois extensions of F, G_E is the subgroup of G fixing E. $((G, {G_E}, K)$ is a formation.)

The action of G on K^{\times} makes it into a G-module, since $(K^{\times})^{G_E} = E^{\times}$, we know $K^{\times} =$ $\bigcup E^{\times}.(K^{\times}$ is discrete G-module) Further, E^{\times} is G/G_E -module, we have:

$$
H^n_{ct}(G, K^\times) \cong \varinjlim_E H^n(G/G_E, E^\times)
$$

where H_{ct}^{n} is defined using continuous cocycles.

We also have *Hilbert 90* for our case:

Theorem 2.1.

$$
H_{ct}^1(G, K^\times) = 0
$$

The proof is similar to finite case, then pass to limit.

2.1.3. A Commutative diagram. In the following of this subsection, we fix an exact sequence:

$$
1\longrightarrow C\stackrel{i}{\longrightarrow} W\stackrel{j}{\longrightarrow} G\longrightarrow 1
$$

where C is normal subgroup of W, and any G-module is viewed as a W-module through j , also a C-module with trivial C-action.

For 1-cycle $x : a \mapsto x(a)$ of C on A, we define the corresponding 1-cycle of W on A by trivial extension. For 1-cycle of W on A $x : w \mapsto x(w)$, we define the corresponding 1-cycle on G:

$$
\sigma \mapsto \sum_{j(w)=\sigma} x(w)
$$

By explicitly computation of cycles, we have:

Proposition 2.2. The following sequence is exact.

(4)
$$
H_1(C, A) \longrightarrow H_1(W, A) \longrightarrow H_1(G, A) \longrightarrow 0
$$

There is an important result concerning the composition of Cor : $H_1(C, A) \to H_1(W, A)$ and $Res: H_1(W, A) \to H_1(C, A)$, and the N_G map.

Proposition 2.3. The following diagram commutes:

(5)
$$
H_1(C, A) \xrightarrow{\text{Cor}} H_1(W, A)
$$

$$
\downarrow N_G \qquad \qquad \downarrow \text{Res}
$$

$$
N_G(H_1(C, A)) \longrightarrow H_1(C, A)
$$

Proof. From the exact sequence:

(6)
$$
0 \longrightarrow I_G \longrightarrow \mathbb{Z}[G] \stackrel{\epsilon}{\longrightarrow} \mathbb{Z} \longrightarrow 0
$$

where $\epsilon : \mathbb{Z}[g] \to \mathbb{Z}$ defined by $\sum n_{\sigma} \sigma \mapsto$ $\sum n_{\sigma}$. We tensor it with a Z-free G-module, and using homological sequence, we have:

$$
H_1(G, A) \xrightarrow{\sim} H_0(G, I_G \otimes A) = I_G \otimes A
$$

For G replaced by W, we have $H_1(W, A) \xrightarrow{\sim} H_0(W, I_w \otimes A)$, similarly for C. We will mainly work with the following diagram:

$$
H_1(C, A) \xrightarrow{\text{Cor}} H_1(W, A) \xrightarrow{\sim} H_0(W, I_W \otimes A))
$$

\n
$$
\downarrow N_G \qquad \qquad \downarrow \text{Res} \qquad \qquad \downarrow \text{Res}
$$

\n
$$
0 \longrightarrow N_G(H_1(C, A)) \longleftrightarrow H_1(C, A) \xrightarrow{\sim} H_0(C, I_W \otimes A)
$$

We already know that the right square is commutative,

Executive is commutative,

if $x : w \mapsto x(w)$, x is 1-cycle of W in A, then its image in $H_0(W, I_W \otimes A)$ is $\sum_w (w^{-1} - 1)(1 \otimes x(w))$, its restriction to ${\cal C}$ is:

$$
\sum_{\sigma} \sum_{w} (w_{\sigma} w^{-1} (1 \otimes x(w)) - w_{\sigma} (1 \otimes x(w)))
$$

We have relation: $w_{\tau}w = c_{\tau,w}w_{\sigma}$, then above sum is:

$$
\sum_{\tau} \sum_{w} (c_{\tau,w}^{-1} - 1) w_t (1 \otimes x(w))
$$

which equals to:

$$
\sum_{c \in C} \left((c^{-1} - 1) \sum_{c_{\tau, w} = c} 1 \otimes w_{\tau} x(w) \right)
$$

this is homological class of the following 1-cycle in $H_1(C, A)$:

$$
y: c \mapsto \sum_{c_{\tau, w} = c} w_{\tau} x(w)
$$

If support of x is in C , then:

$$
y(c) = \sum_{w_{\tau}bw_{\tau}^{-1} = c} w_{\tau}x(b) = \sum_{\tau} \tau x(\tau^{-1}(c)) = \sum_{\tau} \tau x(c)
$$

So diagram [5](#page-5-0) commutes.

2.1.4. Cup Product. There are some dual theorems due to Tate and Nakayama (see [\[10\]](#page-22-8) IX section 8 and XI ANNEXE), of most interest to us is the explicit calculations of cup product:

From now on till the end of this document, \hat{H} is used to denote the Tate cohomological groups.

Proposition 2.4. Let A, B be G-modules.

(1) For $a \in A^G$, let $f_a : B \to A \otimes B$ be G-morphism given by $b \mapsto a \otimes b$, then cup product:

$$
\hat{H}^0(G, A) \otimes \hat{H}^n(G, B) \to \hat{H}^n(G, A \otimes B)
$$

is given by:

$$
[a] \cup [x] = f_a^*([x])
$$

where [a] denotes the class of a, $[x] \in \hat{H}^n(G, B)$.

(2) Cup product:

$$
\hat{H}^1(G, A) \otimes \hat{H}^{-1}(G, B) \to \hat{H}^0(G, A \otimes B)
$$

is induced by:

$$
[f] \cup [b] = [\sum_{\sigma \in G} f(\sigma) \otimes \sigma b]
$$

where $b \in B$ satisfies $N_G b = 0$, f is 1-cocycle.

(3) Cup product:

$$
\hat{H}^1(G, A) \otimes \hat{H}^{-2}(G, B) \to \hat{H}^{-1}(G, A \otimes B)
$$

is induced by:

$$
[f] \cup [x] = [\sum_{\sigma \in G} f(\sigma) \otimes x(\sigma)]
$$

(4) Cup product:

$$
\hat{H}^{-2}(G,A)\otimes \hat{H}^2(G,B)\to \hat{H}^0(G,A\otimes B)
$$

is induced by:

$$
[x] \cup [f] = \left[\sum_{\sigma,\tau \in G} \tau x(\sigma) \otimes f(\tau,\sigma)\right]
$$

Assume A is a free G-module, Q is a trivial G-module, then the above (3) gives a pairing:

 $H^1(G, \text{Hom}(A, Q)) \times H_1(G, A) \to H_0(G, Q) = Q$

therefore we have a morphism:

$$
^{(7)}
$$

(7) $\Phi: H^1(G, \text{Hom}(A, Q)) \to \text{Hom}(H_1(G, A), Q)$

Proposition 2.5. If Q is Z-injective, then Φ above is an isomorphism.

Proof. See [\[7\]](#page-22-3) p11-12 or [\[5\]](#page-22-5) part 3 proposition 1.3.8..

Proposition 2.6. If G is a finite group, C is a class module, $u \in H^2(G, C)$ is a fundamental class,

$$
1 \longrightarrow C \xrightarrow{i} W \xrightarrow{j} G \longrightarrow 1
$$

is a group extension belongs to class u. Assume A is a Z-free G-module, $Z = \text{Ker}(N_G : H_1(C, A) \to H_1(C, A)),$ then the following is exact:

(8)
$$
0 \longrightarrow Z \longrightarrow H_1(C,A) \longrightarrow H_1(W,A) \longrightarrow H_1(G,A) \longrightarrow 0
$$

Proof. See [\[7\]](#page-22-3) p12-13 or [\[5\]](#page-22-5) part 3 proposition 1.3.8..

2.1.5. Galois Cohomological Groups of multiplication groups and unit groups of local fields. In this subsection, let us use F to denote the completion of a number field at a finite place v, \overline{F} is the algebraic closure of F. We use O_F , U_F , P_F to denote O_v , U_v , P_v . We first check the axioms of class formation are satisfied.

Let K/F be Galois extension of degree n, $G = G_{K/F}$, assume H is subgroup of G of order m, from Hilbert 90 we have $H^1(G, K^{\times}) = 0$. Assume F' is invariant field of H, then $H = G_{K/F'}$. Then $H^2(H, K^{\times})$ is cyclic group of order m generated by $u_{K/F}$. By calculations:

$$
\text{Inv}_{F'}(\text{Res }u_{K/F}) = [F' : F] \text{Inv}(u_{K/F}) = [F' : F] \frac{1}{n} = \frac{1}{m} = \text{Inv}_{F'}(u_{K/F'})
$$

We have:

$$
(9) \t\t u_{K/F'} = \text{Res}(u_{K/F})
$$

we know that G-module K^{\times} is a class module with $u_{K/F}$ as its fundamental class. We can now use Tate-Nakayama to get:

Theorem 2.7. For all $n \in \mathbb{Z}$, morphism given by cup product $\alpha \mapsto \alpha \cup u_{K/F}$ is an isomorphism from $\hat{H}^n(G,\mathbb{Z})$ to $\hat{H}^{n+2}(G,K^{\times})$. Further, we have commutative diagram:

(10)
\n
$$
\hat{H}^{n}(G, \mathbb{Z}) \xrightarrow{\cup u_{K/F}} \hat{H}^{n+2}(G, K^{\times})
$$
\n
$$
\text{Cor} \left(\text{Res}_{K} \text{Cor} \left(\text{Res}_{K} \right) \xrightarrow{\cup u_{K/F'}} \hat{H}^{n+2}(H, K^{\times}) \right)
$$

Proposition 2.8. Let K/F be finite Galois extension of Local field F, with Galois group G, then (1) there exists an open subgroup V of U_K such that $\hat{H}^n(G, V) = 0$, $\forall n \in \mathbb{Z}$. (2) If the extension is unramified, then $\hat{H}^n(G, U_K) = 0$, $\forall n \in \mathbb{Z}$.

Proof. See [\[11\]](#page-22-7) Chapter IV.

Now we do some calculations:

Proposition 2.9. If F is nonarchimedean local field, K/F is unramified Galois extension, $G =$ $G(K/F)$. If A is a finitely generated \mathbb{Z} -free module and at the same time a G-module. Then the norm morphism induces a surjective morphism:

$$
N_G : \text{Hom}(A, U_K) \to \text{Hom}_G(A, U_K)
$$

Proof. For $n \ge 1$, let $U_K^n = \{x \in U_K \mid x \equiv 1 \mod P_K^n\}$, they are all G-invariant. We only need to verify:

$$
N_G: \operatorname{Hom}(A, U_K/U_K^1) \to \operatorname{Hom}_G(A, U_K/U_K^1)
$$

$$
N_G: \operatorname{Hom}(A, U_K^n/U_K^{n+1}) \to \operatorname{Hom}_G(A, U_K^n/U_K^{n+1})
$$

are surjective.

Let $k_K = O_K/P_K$ be the residue field of O_K . $U_K^n/U_K^{n+1} \cong k_K$ as G-module. Then we consider:

 $N_G : \text{Hom}(A, k_K) \to \text{Hom}_G(A, k_K)$

Assume $k_F = O_F/P_F$, then k_F is isomorphic to $\mathbb{Z}[G]\otimes k_F$ as G-module. And Hom $(A, \mathbb{Z}[G]\otimes k_F) \cong$ $\mathbb{Z}[G]\otimes \text{Hom}(A, k_F)$, so

$$
\widehat{H}^0(G,\mathbb{Z}[G]\otimes \operatorname{Hom}(A,k_F))=0
$$

that is to say, N_G is surjective.

 U_K/U_K^1 as G-module is isomorphic to k_K^{\times} . We consider:

 $N_G: \text{Hom}(A, k_K^{\times}) \to \text{Hom}_G(A, k_K^{\times})$

we want to show $\widehat{H}^0(G, \text{Hom}(A, k_F^{\times})) = 0$. Since G is a finite cyclic group and $\text{Hom}(A, k_K^{\times})$ is finite, so all $\hat{H}^p(G, \text{Hom}(A, k_F^{\times}))$ have the same order. We shall prove:

$$
\hat{H}^1(G,\operatorname{Hom}(A,k_F^\times))=0
$$

Let \overline{k}_K be the algebraic closure of k_K , F is the subgroup of Gal (\overline{k}_K/k_K) generated by the Frobenius automorphism $\sigma_0: x \mapsto x^{|k_K|}$, then the following sequence is exact:

$$
0 \longrightarrow \mathop{\longrightarrow} H^1(G,\mathop{\rm Hom}\nolimits(A,k_F^\times)) \longrightarrow \mathop{\longrightarrow} H^1({\mathcal F},\mathop{\rm Hom}\nolimits(A,\overline{k}_F^\times))
$$

Then we only need to show $H^1(\mathcal{F}, \text{Hom}(A, \overline{k}_F^{\times})) = 0$, that is to say, for any 1-cocycle f of \mathcal{F} , there is a $\varphi \in \text{Hom}(A, k_F^{\times})$ such that $f(\sigma_0) = \sigma_0 \varphi - \varphi$. It is done by linear algebra. See [\[7\]](#page-22-3) p17.

 \Box

2.2. Weil Group and L -Group. First give some definitions:

$$
C_K = \begin{cases} \text{idele class group} & \text{if } K \text{ algebraic number field} \\ K^\times & \text{if } K \text{ Local field} \end{cases}
$$

Now we have a special case of Weil group for our use:

(Weil group, special case) If F is local or global field, K/F is Galois extension with Galois group $G_{K/F}$. (G, G_F, C) be a class formation from knowledge of class field theory. Then Weil group is defined in [1.3](#page-2-1) has its form as an extension of $G_{K/F}$ through C_K :

 $0 \longrightarrow C_K \xrightarrow{i} W_{K/F} \xrightarrow{j} G_{K/F} \longrightarrow 0$

such that its factor set is a fundamental class $u \in H^2(G_{K/F}, C_K)$.

Now we assume that F and F' are local fields or global fields, with K (resp. K') Galois extension of F (resp. F'), φ is isomorphism from K to K' which maps F to F'.

Moreover we add some conditions: if we require F and F' to be simultaneously local fields or global fields, we require F' to be separable over image of F ; if F is global but F' is local, then require F' to be separable over the closure of image of F .

Under these conditions, for φ we can associate a homomorphism:

$$
\varphi_W: W_{K'/F} \to W_{K/F}
$$

Therefore for discrete $G_{K/F}$ -module A, we can associate a morphism of cohomological groups:

(11)
$$
\varphi_W^* : H^1_{ct}(W_{K/F}, A) \to H^1_{ct}(W_{K'/F'}, A)
$$

2.3. L-group of torus. Assume F is local field or global field, T is an algebraic torus defined over F and splits over Galois extension K, $X(T)$ is $G_{K/F}$ -module formed by characters of T. Let $X_*(T) = \text{Hom}(X(T), \mathbb{Z})$

2.4. L-homomorphisms from Weil Groups to L. We consider continuous homomorphism φ : $W_{K/F} \rightarrow {}^L T$, such that the following diagram commutes:

For two continuous homomorphism φ and φ' , if exists a $t \in {}^L T^0(\mathbb{C})$ such that $\varphi(w) = t^{-1} \varphi(w) t$, then we say that φ and φ' are isomorphic. Denote the set of equivalence class of such homomorphism $\Phi(T)$.

If we denote $\varphi(w) = (a(w), j(w))$, where $a(w) \in {}^L T^0$, then $w \mapsto a(w)$ is continuous 1-cocycle from $W_{K/F}$ to ${}^L T^0$. We have

(12)
$$
t^{-1} \cdot (t' \rtimes \sigma) \cdot t = t^{-1} \cdot t' \cdot \sigma t \rtimes \sigma \quad (t, t' \in {}^L T^0)
$$

Therefore, $\varphi \equiv \varphi'$ if and only if a and a' represent the same cohomological class. We have:

$$
\Phi(T) \cong H^1_{ct}(W_{K/F}, {}^L T^0)
$$

2.5. Unramified equivalent class of homomorphisms. If F is a local field, if element $[\varphi] \in$ $\Phi(T)$ such that $\varphi|_{\text{Inertia Group}}$ is trivial, we call $[\varphi]$ is unramified, we use $\Phi_{\text{unr}}(T)$ to denote all unramified elements of $\Phi(T)$.

If moreover, K/F is assumed to be unramified, then $G_{K/F}$ is generated by Frobenius automorphism σ_0 . Unramified φ is determined by $\varphi(1 \times \sigma_0) = t \times \sigma$ completely, where $t \in {}^L T^0$ is determined up to conjugation. Therefore in this case we have:

(13)
$$
\Phi_{\text{unr}}(T) = \left(\begin{smallmatrix} L & 0 \\ T & \end{smallmatrix} \times \sigma\right) / \operatorname{Int}^L T^0
$$

where Int^LT⁰ represents conjugation group with respect to ^LT⁰.

3. Representation and Local L-function

3.1. Representation of Torus. If F is a local field, $T(F)$ is locally compact Abelian group. From Schur's Lemma, we know that: Irreducible representations of $T(F)$ in a Hilbert space are characters, that is to say, continuous homomorphisms $T(F) \to \mathbb{C}^{\times}$.

For K a global field, from exact sequence:

$$
1 \longrightarrow K^{\times} \longrightarrow J_K \longrightarrow C_K \longrightarrow 1
$$

we derive an exact sequence:

$$
1 \longrightarrow T(F) \longrightarrow T(\mathbb{A}_F) \longrightarrow \text{Hom}_{G_{K/F}}(X(T), C_K) \longrightarrow H^1(G_{K/F}, T(K))
$$

Therefore $C_F(T) = T(\mathbb{A}_F)/T(F)$ can be seen as subgroup of $\text{Hom}_{G_{K/F}}(X(T), C_K)$, to study representations of $T(F)$ (F local field) or representations of $T(\mathbb{A}_F)/T(F)$ (F global field), we need to study the following group:

$$
\Pi(T) = \text{Hom}_{ct}(\text{Hom}_{G_{K/F}}(X(T), C_K), \mathbb{C}^{\times})
$$

Remark. We can also consider the character taken values in complex numbers of absolute value 1, see [\[9\]](#page-22-9) Chapter 1 Section 8.

3.2. Torus Theorem.

Theorem 3.1. There exists a canonical isomorphism:

$$
\Phi(T) \cong \Pi(T)
$$

And its improved version:

- **Theorem 3.2.** (1) If F is a local field, then $H_{ct}^1(W_{K/F}, {}^L T^0)$ is canonically isomorphic to character group of $T(F)$.
- (2) If F is a global field, then we have a canonical homomorphism from $H^1_{ct}(W_{K/F}, {}^L T^0)$ to character group of $T(\mathbb{A}_F)/T(F)$, with finite kernel, and formed by the following class α : when K' is the completion of K with respect to some valuation, we have $\varphi_W^*(\alpha) = 0$, where F' is the algebraic closure of F in K', $\varphi: K/F \to K'/F'$ is an embedding.

3.3. Equivalent classes of unramified homomorphisms and characters. For this subsection, we fix: T is a torus defined over a nonarchimedean local field, and splits over unramified extension K/F with Galois group $G_{K/F}$, let σ_0 denotes the Frobenius automorphism of $G_{K/F}$.

If a character is trivial over $T(O_F) = \text{Hom}_{G_{K/F}}(X(T), U_K)$, then it is called unramified. The set of unramified characters of $T(F)$ is denoted as $\Phi_{unr}(T)$.

The exact sequence:

$$
0 \longrightarrow U_K \longrightarrow C_K \xrightarrow{v} \mathbb{Z} \longrightarrow 0
$$

where $v(a) = 1$ if and only if a generates prime ideal P_K . As $G_{K/F}$ -module it splits and leads to the following exact sequence:

 $0 \longrightarrow \text{Hom}_{G_{K/F}}(X(T), U_K) \longrightarrow \text{Hom}_{G_{K/F}}(X(T), C_K) \longrightarrow \text{Hom}_{G_{K/F}}(X(T), C_K) \longrightarrow 0$

We immediately have:

Lemma 3.3. If the character of $\text{Hom}_{G_{K/F}}(X(T), C_K) = T(F)$ is trivial on $\text{Hom}_{G_{K/F}}(X(T), U_K) =$ $T(O_F)$, then it is character of $\text{Hom}_{G_{K/F}}(X(T), \mathbb{Z}) = X_*(T)^{G_{K/F}}$, and is contained in $\text{Hom}(X(T), \mathbb{Z}) =$ $X_*(T)$.

Using the above notations, we can describe the corollary of Theorem 3.2 (1).

Corollary 1. (1) $\chi \in \Pi(T)$ is unramified if and only if its related element $[f] \in H_{ct}^1(W_{K/F}, {}^L T^0)$ is the lifting of the following:

$$
H_{ct}^1(\mathbb{Z}, {}^L T^0) \to H_{ct}^1(W_{K/F}, {}^L T^0),
$$

this lifting is induced by the following exact sequence:

$$
0\longrightarrow U_K\longrightarrow W_{K/F}\stackrel{\mu}{\longrightarrow} \mathbb{Z}\longrightarrow 0
$$

where μ satisfies the following conditions: $\mu(w) = 1$ implies $j(w) = \sigma_0$.

(2) Besides, if χ extends trivially to a character of $X_*(T)$ and $\mu(w_0) = 1$, then for $\lambda \in {}^L T^0(\mathbb{C})$ we have

$$
f(w_0)(\lambda) = \chi(\lambda)
$$

(3) Isomorphism $\Phi(T) \cong \Pi(T)$ induces bijection between $\Pi_{\text{unr}}(T)$ and $\Pi_{\text{unr}}(T)$.

4. Proof of Theorem [3.2](#page-0-1)

To simplify notations, in this section [4,](#page-11-0) we shall use C, W, G to denote C_K , $W_{K/F}$, $G_{K/F}$. Therefore we have an exact sequence:

$$
0\longrightarrow \underline{C}\stackrel{i}{\longrightarrow}W\stackrel{j}{\longrightarrow}G\longrightarrow 0
$$

and we can choose right coset representatives of C in $W: \{w_{\sigma} \mid \sigma \in G\}$, for fixed $\sigma, \tau \in G$, $\exists c_{\sigma,\tau} \in C$ such that:

$$
w_{\sigma} w_{\tau} = c_{\sigma,\tau} w_{\sigma \tau},
$$

and the fundamental class $u \in H^2(G, C)$ is 2-cocycle of $c_{\sigma, \tau}$.

4.1. Step $1: H_1(C, X_*(T))^G \xrightarrow{\sim} \text{Hom}_G(X(T), C)$.

Theorem 4.1. Prove that there is a G-isomorphism:

(14)
$$
H_1(C, X_*(T))^G \xrightarrow{\sim} \text{Hom}_G(X(T), C)
$$

Proof. From cup product:

$$
\bigl\langle X(T),X_*(T)\bigr\rangle\to\mathbb{Z},\quad \bigl\langle\lambda,\widehat{\lambda}\bigr\rangle=\widehat{\lambda}(\lambda)
$$

we get a bilinear morphism:

$$
H^0(C, X(T)) \times H_1(C, X_*((T))) \to H_1(C, \mathbb{Z})
$$

it commutes with the action of G on these three groups. Since $H^0(C, X(T))$ and $H_1(C, \mathbb{Z})$ are isomorphic to $X(T)$ and C as G-modules, we have isomorphism

 \Box

(15) $H_1(C, X_*(T)) \to \text{Hom}(X(T), C)$

From Proposition 1.3.7, it maps 1-cycle y to the class of the following homomorphisms:

(16)
$$
\lambda \to \prod_{c \in C} c^{\langle \lambda, y(c) \rangle}
$$

Since $X(T)$ is direct sum of Z, this is an isomorphism.

4.2. Step 2:
$$
H_1(W, X_*(T)) \xrightarrow{\sim} H_1(C, X_*(T))^G
$$
.

Theorem 4.2. The transform from W to C leads to an isomorphism:

(17)
$$
H_1(W, X_*(T)) \xrightarrow{\sim} H_1(C, X_*(T))^G
$$

Proof. From definition we know that:

$$
H_1(C, X_*(T))^G/N_G(H_1(C, X_*(T))) = \hat{H}^0(G, H_1(C, X_*(T))).
$$

Using isomorphism [15,](#page-11-3) we have an exact sequence:

(18) $0 \longrightarrow N_G(H_1(C, X_*(T))) \longrightarrow H_1(C, X_*(T))^G \longrightarrow \hat{H}^0(G, \text{Hom}(X(T), C)) \longrightarrow 0$ From [2.6,](#page-6-0) we have exact sequence:

(19)
$$
0 \longrightarrow Z \longrightarrow H_1(C, X_*(T)) \longrightarrow H_1(W, X_*(T)) \longrightarrow H_1(G, X_*(T)) \longrightarrow 0
$$

where $Z = \text{Ker}(N_G : H_1(C, X_*(T))) \to H_1(C, X_*(T)).$

We have an obvious isomorphism:

(20)
$$
X_*(T) \otimes C \xrightarrow{\sim} \text{Hom}(X(T), C)
$$

It maps $\hat{\lambda} \otimes c$ to morphism $\lambda \mapsto c^{\langle \lambda, \hat{\lambda} \rangle}$, with respect to this pairing, we have cup product:

$$
H_1(G,X_*(T))\times \hat{H}^2(G,C)\to \hat{H}^0(G,\operatorname{Hom}(X(T),C))
$$

According to Tate-Nakayama Theorem, cup product with fundamental class $u \in \hat{H}^2(G, C)$ gives an isomorphism:

(21)
$$
E: H_1(G, X_*(T)) \xrightarrow{\sim} \hat{H}^0(G, \text{Hom}(X(T), C))
$$

According to proposition [2.4,](#page-6-1) this morphism maps 1-cycle z of G in $X_*(T)$ to class of homomorphism

(22)
$$
\lambda \mapsto \prod_{\sigma,\tau} c^{\langle \lambda,\tau z(\sigma) \rangle}_{\tau,\sigma}
$$

If we combine exact sequences [18,](#page-11-4) [19](#page-11-5) and isomorphism [21,](#page-12-0) we get a commutative diagram:

(23) 0 0 Z H1pC, X˚pTqq H1pW, X˚pTqq H1pG, X˚pTqq 0 ⁰ ^NGpH1pC, X˚pTqqq ^H1pC, X˚pTqq^G ^H^p ⁰ pG, HompXpTq, Cqq 0 0 0 N^G Res E

The commutativity of left block is from proposition [2.3.](#page-5-1)

Fixing a 1-cycle of W in $X_*(T), x : w \mapsto x(w)$, for $\tau \in G$, $s \in W$, exists a unique element $c_{\tau,w}$ and unique $\sigma \in G$ such that $w_{\tau}w = c_{\tau,w}w_{\sigma}$. From the proof of proposition [2.3](#page-5-1) Res (x) is the 1-cycle class of the following:

$$
y: c \mapsto \sum_{c_{\tau, w} = c} w_{\tau} x(w)
$$

from [16,](#page-11-6) this cycle's image in $\widehat{H}^0(G, \text{Hom}(X(T), C))$ is the class formed by:

(24)
$$
\lambda \mapsto \prod_{\tau, w} c^{\langle \lambda, w_\tau x(w) \rangle}_{\tau, w}
$$

If $w = cw_{\sigma}, c \in C$, then $c_{\tau,w} = w_{\tau} c w_{\tau}^{-1} c_{\tau,\sigma}$, therefore this product equals to
 $\int \prod_{(w, c w_{\tau}^{-1}) \langle \lambda, w_{\tau} x(c w_{\sigma}) \rangle} \left(\int \prod_{c \langle \lambda, w_{\tau} x(c w_{\sigma}) \rangle} \right)$

$$
\left\{\prod_{\sigma,\tau,c}(w_{\tau}cw_{\tau}^{-1})^{\langle\lambda,w_{\tau}x(cw_{\sigma})\rangle}\right\}\left\{\prod_{\sigma,\tau,c}c_{\tau,\sigma}^{\langle\lambda,w_{\tau}x(cw_{\sigma})\rangle}\right\}
$$

First product is a norm, this means if we let:

$$
z(\sigma) = \sum_{c} x(cw_{\sigma})
$$

Then homomorphism [24](#page-12-1) have the same cohomological class as:

(25)
$$
\lambda \mapsto \prod_{\sigma,\tau} c^{\langle \lambda,\tau z(\sigma) \rangle}_{\tau,\sigma}
$$

But z is the image of x under the following homomorphism:

$$
H_1(W, X_*(T)) \to H_1(G, X_*(T))
$$

However from [22,](#page-12-2) $E(z)$ is the class of [25,](#page-12-3) so we have proved the commutativity of right square of [23.](#page-12-4) Therefore by snake lemma, we know [17](#page-11-7) is an isomorphism. \Box

4.3. Step 3: $H^1_{ct}(W, {}^L T^0) \xrightarrow{\sim} \text{Hom}(H_1(W, X_*(T)), \mathbb{C}^\times).$

Theorem 4.3. The pairing associated to valuation map $(t, \lambda) \mapsto \lambda(t)$ $(t \in {}^L T^0, \lambda \in X_*(T))$

$$
H_{ct}^1(W,{}^L T^0) \times H_1(W, X_*(T)) \to \mathbb{C}^\times
$$

leads to an isomorphism:

(26)
$$
H_{ct}^1(W,{}^L T^0) \xrightarrow{\sim} \text{Hom}(H_1(W, X_*(T)), \mathbb{C}^\times)
$$

Proof. We already have $H_1(W, X_*(T))$ isomorphic to $Hom_G(X(T), C)$, this isomorphism can be used to transform $H_1(W, X_*(T))$ into a topological group.

Because \mathbb{C}^{\times} is Z-injective, from proposition [2.5,](#page-6-2) we have isomorphism

 $\Phi: H^1(W, {}^L T^0) \xrightarrow{\sim} \text{Hom}(H_1(W, X_*(T)), \mathbb{C}^\times)$

To prove [26,](#page-13-1) we only need to prove $\Phi([f])$ is continuous if and only if f is a continuous cocycle. Let U denote the set formed by elements of norm 1, then we have exact sequence:

 $1 \longrightarrow U \longrightarrow C \longrightarrow M \longrightarrow 1$

where M is $\mathbb Z$ or $\mathbb R$, G acts trivially on it, this sequence splits as an sequence of Abel groups, and the following is exact:

$$
0 \longrightarrow {\rm Hom}(X(T),U) \stackrel{\lambda}{\longrightarrow} {\rm Hom}(X(T),C) \stackrel{\mu}{\longrightarrow} {\rm Hom}(X(T),M) \longrightarrow 0
$$

Proposition 4.4. We have an injective morphism:

$$
\psi : (N_G(\text{Hom}(X(T), C)) \cap \text{Hom}(X(T), U))/N_G(\text{Hom}(X(T), U)) \to
$$

$$
\widehat{H}^{-1}(G, \text{Hom}(X(T), M))/\mu \widehat{H}^{-1}(G, \text{Hom}(X(T), C))
$$

Proof of this proposition:

Proof. If $z = N_Gx \in \text{Hom}(X(T), U)$, $x \in \text{Hom}(X(T), C)$, and $y = \mu(x)$, then $N_G(y) = N_G(\mu(x))$ $\mu(N_Gx) = 0$. Thus we define the morphism ψ to be the map sending z to the quotient image \overline{y} of y on the right hand side. This is well defined: if x has value in $\text{Hom}(X(T), U)$, it is 0. If x and x' satisfy $N_G x = N_G x'$, we have $x - x' = r$, so $r \in \text{Hom}(X(T), U)$, $\overline{\mu(x)} = \overline{\mu(x') + \mu(r)} = \overline{\mu(x')}$.

Injectivity: We need to show that if $\psi(z) = 0$ for $z = N_Gx$, and $x \in \text{Hom}(X(T), C_K)$, then $\exists x' \in \text{Hom}(X(T), U)$ such that $N_G x = N_G x'$.

If the image is 0, since $y \in I_G$ Hom $(X(T), M)$, we can choose x such that $y =$ $\sigma^{(n-1)}v_{\sigma} - v_{\sigma}$ for $v_{\sigma} \in \text{Hom}(X(T), M)$, let u_{σ} be the elements in $\text{Hom}(X(T), C)$ such that $\mu(u_{\sigma}) = v_{\sigma}$, then $x' = x - \sum_{\sigma} (\sigma^{-1}u_{\sigma} - u_{\sigma}) \in \text{Hom}(X(T), U)$ and $N_G x = N_G x'$, $\overline{\mu(x')} = \overline{\mu(x)} = 0$.

Now we can show $N_G(\text{Hom}(X(T), C))$ is closed in $\text{Hom}_G(X(T), C)$. Case 1:

Since we have $\text{Hom}(X(T), U) \cong T(O_K) \cong (U_K)^d$ where d is rank of lattice $X(T)$, it is compact. Note N_G is a continuous map, so $N_G(\text{Hom}(X(T), U))$ is compact subgroup of $\text{Hom}(X(T), U)$, thus closed in Hom $(X(T), U)$, hence in $N_G(\text{Hom}(X(T), C)) \cap \text{Hom}(X(T), U)$. And since the above Proposition gives injectivity of ψ , we know $N_G(\text{Hom}(X(T), U))$ is of finite index in $N_G(\text{Hom}(X(T), C)) \cap$ $Hom(X(T), U)$, so $N_G(Hom(X(T), C)) \cap Hom(X(T), U)$ is closed in $Hom(X(T), U)$

Except for K archimedean or global, we have $\text{Hom}_G(X(T), U)$ is open in $\text{Hom}_G(X(T), C)$, and

 $N_G(\text{Hom}(X(T), C)) \cap \text{Hom}_G(X(T), C) = N_G(\text{Hom}(X(T)), C) \cap \text{Hom}(X(T), U)$

is closed. From knowledge of topological groups, we know $N_G(\text{Hom}(X(T), C))$ is closed in $\text{Hom}_G(X(T), C)$. It is also open because M discrete.

Case 2:

In the archimedean or global field case,

 $1 \longrightarrow U \longrightarrow C \longrightarrow M = \mathbb{R}^{>0} \longrightarrow 1$

splits as a G-module, we have the following split exact sequence:

$$
0 \longrightarrow \operatorname{Hom}(X(T),U) \stackrel{\lambda}{\longrightarrow} \operatorname{Hom}(X(T),C) \stackrel{\mu}{\longrightarrow} \operatorname{Hom}(X(T),M) \longrightarrow 0
$$

So we have

(27)
$$
\text{Hom}(X(T), C) \cong \text{Hom}(X(T), U) \times \text{Hom}(X(T), M)
$$

and

$$
N_G(\text{Hom}(X(T), C)) \cong N_G(\text{Hom}(X(T), U)) \times N_G(\text{Hom}(X(T), M))
$$

We also have:

$$
Hom_G(X(T), C) \cong Hom_G(X(T), U) \times Hom_G(X(T), M)
$$

Since $M = \mathbb{R}^{>0}$ is divisible, we have $\widehat{H}^0(G, \text{Hom}(X(T), M)) = 0$, which means:

$N_G(\text{Hom}(X(T), M)) = \text{Hom}_G(X(T), M)$

Combined with the fact that $N_G(\text{Hom}(X(T), U))$ is closed in $\text{Hom}_G(X(T), U)$, we see $N_G(\text{Hom}(X(T), C))$ is closed in $\text{Hom}_G(X(T), C)$.

It is also open in it because $N_G(\text{Hom}(X(T), U))$ is of finite index in $\text{Hom}_G(X(T), U)$. Now we have: for $\varphi \in \text{Hom}_G(X(T), C)$, it is continuous if and only if $\varphi \circ N_G$ is continuous.

We have the following lemma which can be proved easily:

Lemma 4.5. A 1-cocycle x of $H^1(W,{}^L T^0)$ is continuous if and only if its restriction to $H^1(C,{}^L T^0)$ is continuous.

The following diagram is commutative:

$$
H^1(W,{}^L T^0) \xrightarrow{\sim} \text{Hom}(H_1(W, X_*(T)), \mathbb{C}^\times)
$$

\n
$$
\downarrow^{\text{Res}} \qquad \qquad \downarrow^{\text{Cor}}
$$

\n
$$
H^1(C, {}^L T^0) \xrightarrow{\sim} \text{Hom}(H_1(C, X_*(T)), \mathbb{C}^\times)
$$

where $\widehat{\text{Cor}}$ is induce by $\text{Cor} : H_1(C, X_*(T)) \to H_1(W, X_*(T))$. $[f] \in Z^1(C, {}^L T^0)$ under the bottom morphism E is the map sending $\hat{\lambda} \otimes a \in \text{Hom}(X_*(T) \otimes C, \mathbb{C}^{\times}) \cong \text{Hom}(H_1(C, X_*(T)), \mathbb{C}^{\times})$ to $\langle \hat{\lambda}, f(a) \rangle$, this is continuous.

4.3.1. Proof of Theorem [3.2](#page-0-1) (2). This part, I mainly follow [\[9\]](#page-22-9) Chapter 1 Section 8 and [\[8\]](#page-22-4). Here are some preparations:

Let F be a global or local field, and let K be a finite Galois extension of F. Let M be a finitely generated torsion free $G_{K/F}$ -module, then we define:

(28)
$$
M' := \text{Hom}_{ct}(M, \mathbb{C}^{\times})
$$

$$
M^{\dagger} := \text{Hom}(M, \mathbb{C}^{\times})
$$

They are again $G_{K/F}$ -modules, we regard these groups as $W_{K/F}$ -modules. If we write $W_{K/F}$ = $\bigcup w_qC_K$ as union of disjoint left cosets. As constructed in [\[8\]](#page-22-4) section 3, we define:

Cor:
$$
H^1(C_K, M^{\dagger}) \to H^1(W_{K/F}, M^{\dagger})
$$

as the map sending $\alpha: C_K \to M^{\dagger}$ to map $Cor(\alpha): W_{K/F} \to M^{\dagger}$ such that

$$
(\text{Cor}(\alpha))(w) = \sum_{g \in G} w_g \alpha(w_g^{-1} w w_{g'}), \text{ where } w w_{g'} \equiv w_g \mod C_K
$$

From definition of Weil groups [1.3,](#page-2-1) let (G, G_F, C) be a class formation, if we let G_K denote an open normal subgroup of finite index of $G, C_F = C^G$, then we have:

$$
0 \xrightarrow{\qquad} C_K \xrightarrow{i} W_{K/F} \xrightarrow{j} G_{K/F} \xrightarrow{\qquad} 0
$$

And it corresponding to the canonical class $u \in H^2(G_{K/F}, C_K)$.

For any $W_{K/F}$ -module M, the Hochschild-Serre spectral sequence gives an exact sequence:

$$
0 \longrightarrow H^1(G_{K/F}, M^{\dagger}) \xrightarrow{\text{Inf}} H^1(W_{K/F}, M^{\dagger}) \xrightarrow{\text{Res}} H^1(C_K, M^{\dagger})^{G_{K/F}} \xrightarrow{\tau} H^2(G_{K/F}, M^{\dagger})
$$

we can make the last morphism τ (called the transgression) explicitly in our case:

Lemma 4.6. If C_K acts trivially on M, then the transgression

 $\tau: H^1(C_K, M^\dagger)^{G_{K/F}} \to H^2(G_{K/F}, M^\dagger)$

is the negative of the map $-\cup u$ induced by the pairing

$$
\text{Hom}(C_K, M) \times C_K \to M
$$

Proof. Write $W_{K/F} = \bigsqcup_g C_K w_g$, and let $w_g w_{g'} = c_{g,g'} w_{gg'}$. Then $(c_{g,g'})$ is a 2-cocycle representing *u*. Let $\alpha \in \text{Hom}_{G_{K/F}}(C_K, M)$ and define $\beta(cw_g) = \alpha(c)$, $c \in C_K$. Then

(29)
\n
$$
d\beta(g,g') := d\beta(w_g, w_{g'})
$$
\n
$$
= g\beta(w_{g'}) - \beta(w_g w_{g'}) + \beta(w_g)
$$
\n
$$
= -\alpha(c_{g,g'})
$$

 \Box

which equals $-(\alpha \cup u)(g, g')$.

Lemma 4.7. The corestriction map Cor : $H^1(C_K, M^{\dagger}) \to H^1(W_{K/F}, M^{\dagger})$ factors through $H^1(C_K, M^{\dagger})_{G_{K/F}}$.

Proof.

$$
Cor(h\alpha)(w) = \sum_{g} w_g w_h \alpha (w_h^{-1} w_g^{-1} w w_{g'} w_h)
$$

where g' is such that $ww_{g'} \equiv w_g \mod C_K$. $w(w_{g'}w_h) \equiv (w_gw_h) \mod C_K$. Therefore the class of Cor $(h\alpha)$ is the same as that of Cor (α) , so Cor $((h-1)\alpha) = 0$ in $H^1(W_{K/F}, M^{\dagger})$ \Box

Lemma 4.8. The composite

$$
H^1(C_K, M^{\dagger}) \xrightarrow{\text{Cor}} H^1(W_{K/F}, M^{\dagger}) \xrightarrow{\text{Res}} H^1(C_K, M^{\dagger})
$$

is equal to N_G .

Proof. When $w \in C_K$, for $\alpha \in Z^1(C_K, M^{\dagger})$ and $w \in W_{K/F}$,
 $\text{Cor}(\alpha)(w) = \sum_{j} g \alpha(g^{-1}wg)$

$$
Cor(\alpha)(w) = \sum_{g} g\alpha(g^{-1}wg) = (N_G\alpha)(w).
$$

 \Box

Theorem 4.9. For any finitely generated torsion free $G_{K/F}$ -module M, the corestriction map defines an isomorphism:

$$
\Phi: \mathrm{Hom}_{ct}(C_K, \mathrm{Hom}_{ct}(M, \mathbb{C}^{\times}))_{G_{K/F}} \xrightarrow{\approx} H^1_{ct}(W_{K/F}, \mathrm{Hom}_{ct}(M, \mathbb{C}^{\times}))
$$

Proof. Write G in short for $G_{K/F}$. First proof that the corestriction defines an isomorphism

$$
\operatorname{Hom}(C_K, M')_{G_{K/F}} \to H^1(W_{K/F}, M^{\dagger})
$$

and then shows that is makes continuous homomorphisms correspond to continuous cocycles.

(30)
$$
\begin{array}{ccccccc}\n & 0 & \longrightarrow & \hat{H}^{-1}(G, \text{Hom}(C_K, M^{\dagger})) & \longrightarrow & \text{Hom}(C_K, M^{\dagger})_G & \xrightarrow{N_G} & \text{Hom}(C_K, M^{\dagger})^G & \longrightarrow & \hat{H}^0(G, \text{Hom}(C_K, M^{\dagger})) \\
& & & \downarrow^{\infty} & & & \downarrow^{\infty} & & & \\
0 & \longrightarrow & H^1(G, M^{\dagger}) & \xrightarrow{\text{Inf}} & H^1(W_{K/F}, M^{\dagger}) & \xrightarrow{\text{Res}} & H^1(C_K, M^{\dagger})^G & \longrightarrow & H^2(G, M^{\dagger})\n\end{array}
$$

The horizontal line is the definition sequence of Tate cohomology groups, the bottom line is Hochschild-Serre spectral sequence, the two vertical isomorphisms are consequences of Tate-Nakayama, the third square commutes because of lemma [4.6.](#page-15-0) The second square commutes because of lemma [4.8.](#page-16-0) The first square commutes by explicitly calculating each maps, see [\[9\]](#page-22-9) Lemma 8.7. By five lemma, Cor in [30](#page-16-1) is an isomorphism.

 \Box

Next we show it makes continuous homomorphisms correspond to continuous: The following is from [\[8\]](#page-22-4) section 5 and [\[9\]](#page-22-9) lemma 8.10.

Proposition 4.10. If D is an (real) abelian connected Lie group, equipped with an action of $G = G_{K/F}$ (analytic) then the natural homomorphism:

$$
\hat{H}^p(G, \text{Hom}_{ct}(C_K, D)) \to \hat{H}^p(G, \text{Hom}(C_k, D))
$$

is an isomorphism for all $p \in \mathbb{Z}$.

Proof. (a) K and F are local archimedean. The only nontrivial case is $F = \mathbb{R}$ and $K = \mathbb{C}$, here $C_K = \mathbb{C}^\times$, the exact sequence:

 $0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{C}^\times \longrightarrow 0$

gives exact sequence:

$$
0 \longrightarrow \text{Hom}_{ct}(\mathbb{C}^{\times}, D) \longrightarrow \text{Hom}_{ct}(\mathbb{R}^{2}, D) \longrightarrow \text{Hom}_{ct}(\mathbb{Z}, D) \longrightarrow 0
$$

$$
0 \longrightarrow \text{Hom}(\mathbb{C}^{\times}, D) \longrightarrow \text{Hom}(\mathbb{R}^{2}, D) \longrightarrow \text{Hom}(\mathbb{Z}, D) \longrightarrow 0
$$

because D is divisible hence \mathbb{Z} -injective and it is an abelian connected Lie group. From $\text{Hom}_{ct}(\mathbb{C}, D)$ and $\text{Hom}(\mathbb{C}, D)$ cohomologically trivial, we know that we can replace C_F with Z which is discrete and it is obvious.

(b) F and K nonarchimedean local fields. If U_K the group of units of K^{\times} , we have $K^{\times}/U_K \cong q^{\mathbb{Z}}$; and if U_K^n is the subgroup of units congruent to 1 module n-th power of maximal ideal, we know from [\[10\]](#page-22-8) Chapter XII, section 3 that U_K^1 and U_K^1/U_K^n are cohomologically trivial for all n if K/F is unramified. We know that if A is cohomologically trivial and D is divisible, then Hom (A, D) is also cohomologically trivial. So $Hom(U_K^1, D)$ and $Hom(U_K^1/U_K^n, D)$ are cohomologically trivial. Because

$$
\operatorname{Hom}_{ct}(U_K^1, D) = \varinjlim \operatorname{Hom}(U_K^1/U_K^n, D)
$$

we know $\text{Hom}_{ct}(U^1_K, D)$ is cohomologically trivial. So again we can replace C_K by K^{\times}/U^1_K which is discrete. For the general case, replace U_K^n by V_K^n , where V_K is as in proposition [2.8,](#page-7-0) the proof is similar.

the proot is similar.

(c) F global. Here C_K is the idèle class group. Define $V \subset C_F$ to be $\prod V_v$ where $V_v = \hat{\mathcal{O}}_v^{\times}$ for v nonarchimedean prime that is unramified in K , and V_v is a subgroup as in above case for the rest primes. It is therefore enough to prove the lemma for C_F /V. In the function field case, this is discrete and in the number field case this is an extension of a finite group by \mathbb{R}^{\times} . In the first case it is done, in the second case by exponential shows that \mathbb{R}^{\times} is the quotient of a uniquely divisible group by a discrete group.

Now we have:

Corollary 2. The map:

Cor : Hom_{ct}
$$
(C_K, D)^G
$$
 \rightarrow $H^1_{ct}(W_{K/F}, D)$

is bijective.

Proposition 4.11. If $\varphi \in Z_c^1(W_{K/F}, D)$ we say φ if not ramified is its restriction to U_K is trivial, and we note $H^1_{unr}(W_{K/F}, D)$, which by the proof of proposition [4.10,](#page-16-2) is isomorphic to Hom $(\mathbb{Z}, D)^G$.

And we also derive a lemma:

Lemma 4.12. If D is a compact group, then I_G Hom_{ct}(C_K , D) is closed in Hom_{ct}(C_K , D), equipped with compact convergence topology.

Proof. In proposition 4.10, applied to
$$
p = -1
$$
, we have :
\n
$$
0 = \text{Ker}\left(\hat{H}^{-1}(G, \text{Hom}_c(C_K, D)) \to \hat{H}^{-1}(G, \text{Hom}(C_K, D))\right) =
$$
\n
$$
\left(I_G \text{Hom}(C_K, D) \bigcap \text{Hom}_{ct}(C_K, D)\right) / I_G \text{Hom}_{ct}(C_K, D)
$$

 \Box

What we concern is $D = M' = \text{Hom}(X_*(T), \mathbb{C}^\times)$, following [\[8\]](#page-22-4) section 6, we separate it into two cases: $\mathbb R$ and $\mathbb R/\mathbb Z$ by the exact sequence

$$
0\longrightarrow \mathbb{Z}\longrightarrow \mathbb{R}^2\longrightarrow \mathbb{C}^\times\longrightarrow 0
$$

then conclude for \mathbb{C}^{\times} .

Proposition 4.13. We have an isomorphism:

$$
\Gamma: \text{Hom}_{ct}(C_K \otimes M, \mathbb{C}^{\times})_G \to \text{Hom}_{ct}(C_K \otimes M)^G, \mathbb{C}^{\times}
$$

Proof. Now suppose $D = \text{Hom}(M, S)$ where $M = X_*(T)$ is a $Z[G]$ -module which as Z-module is free and of finite type, and S is a real connected abelian Lie group where G acts trivially on it. Under this hypothesis, D is a connected abelian Lie group.

We have a natural isomorphism

$$
\text{Hom}_{ct}(C_K \otimes X_*(T), S) \to \text{Hom}_{ct}(C_K, \text{Hom}(X_*(T), S))
$$

where $C_K \otimes X_*(T) \cong C_K^n$ (*n* is rank of $X(T)$), equipped with product topology.

Now first suppose $S = \mathbb{R}/\mathbb{Z}$, we see $\text{Hom}_{ct}(C_K, D)$ is just the Pontryagin dual of $C_K \otimes X_*(T)$, then we claim the orthogonal(in sense of topological groups) of the subgroup $(C_K \otimes X_*(T))^G$ in $C_K \otimes X_*(T)$ is the closed subgroup

$$
I_G \operatorname{Hom}_{ct}(C_K \otimes X_*(T), S)
$$

Now prove this claim by showing: for any $\sigma \in G$ and any $f \in Hom_{ct}(C_K \otimes X_*(T), S)$, $(\sigma f - f)(a) =$ $f(\sigma^{-1}(a)) - f(a) = 0$ if $a = \sigma(a)$ $(a \in C_K \otimes X_*(T))$. So $I_G \text{Hom}_{ct}(C_K \otimes X_*(T), S)$ is contained in the kernel of the following restriction:

$$
\text{Hom}_{ct}(C_K \otimes X_*(T), S) \to \text{Hom}_{ct}((C_K \otimes X_*(T))^G, S)
$$

Conversely, if $a \notin (C_K \otimes X_*(T))^G$, there is a $\sigma \in G$ such that $a \neq \sigma(a)$, since Pontryagin dual separates points, there is a f such that:

$$
f(\sigma^{-1}(a) - a) \neq 0
$$

so $(\sigma - 1)f(a) \neq 0$, the orthogonal of I_G Hom_{ct} $(C_K \otimes X_*(T), S)$ is included in the orthogonal of the kernel. And we conclude by lemma [4.12.](#page-17-0)

When $T = \mathbb{R}$, notice that homomorphism to \mathbb{R} is trivial on compact subgroups, we have:

$$
\operatorname{Hom}_{ct}(C_K \otimes X_*(T), \mathbb{R})^G = \operatorname{Hom}(X_*(T), \mathbb{R})^G = \operatorname{Hom}(X_*(T)^G, \mathbb{R}) = \operatorname{Hom}_{ct}((C_K \otimes X_*(T))^G, \mathbb{R})
$$

We have another version of this result, in [\[9\]](#page-22-9) corollary 8.11. We don't prove it since it is not needed in our use.

Theorem 4.14. Let F be a global or local field, and let M be a finitely generated torsion free G_F -module, there is a canonical isomorphism:

$$
\mathrm{Hom}_{ct}((C\otimes M)^{G_F},\mathbb{C}^{\times})\xrightarrow{\approx} H^1_{ct}(W_F,\mathrm{Hom}_{ct}(M,\mathbb{C}^{\times}))
$$

where $C =$ C_F .

> Now Let's prove (2) of theorem [3.2.](#page-0-1) Recall that, in [3.1,](#page-9-3) we have:

$$
1 \longrightarrow T(F) \longrightarrow T(\mathbb{A}_F) \longrightarrow \text{Hom}_{G_{K/F}}(X(T), C_K) \longrightarrow H^1(G_{K/F}, T(K))
$$

(Note that $(X_*(T)\otimes C_K)^{G_K} \cong \text{Hom}_G(X(T), C_K)$.) We have a surjection with finite kernel:

$$
\Psi: \mathrm{Hom}_{ct}((X_*(T)\otimes C_K)^G, \mathbb{C}^\times) \to \mathrm{Hom}_{ct}(T(\mathbb{A}_K)/T(K)), \mathbb{C}^\times)
$$

Then precompose it first with isomorphism Γ in proposition [4.13,](#page-18-0) then precompose it with isomorphism Φ^{-1} gotten from Theorem [4.9](#page-16-3) taking $M = X_*(T)$:

We get a surjective map $\Psi \circ \Gamma \circ \Phi^{-1}$:

$$
H^1_{ct}(W_{K/F},{}^LT^0) \twoheadrightarrow \text{Hom}_{ct}(T(\mathbb{A}_K)/T(K)), \mathbb{C}^\times)
$$

Then the following diagram commutes:

$$
H_{ct}^{1}(W_{K/F}, {}^{L}T^{0}) \longrightarrow \text{Hom}_{ct}(T(\mathbb{A}_{K})/T(K), \mathbb{C}^{\times})
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\prod H_{ct}^{1}(W_{K'/F'}, {}^{L}T^{0}) \longrightarrow \text{Hom}_{ct}(T(K'), \mathbb{C}^{\times})
$$

we know that right vertical and lower horizontal map are injective, so we have the kernels of the remaining maps are the same. The theorem is proved.

 \Box

4.3.2. Proof of Corollary 1
$$
(1)
$$
, (2) . Now we can prove Corollary 1 (1) , (2) :

Note that T is torus defined over a nonarchimedean local field F , splits over unramified extension K/F

Proof. There is an exact sequence:

$$
0 \longrightarrow U \longrightarrow W \stackrel{\mu}{\longrightarrow} \mathbb{Z} \longrightarrow 0
$$

such that $\mu(w) = 1$ if and only if the transfer of $w \in C$ generates the prime ideal P_K . Since the norm morphism:

 $N_G : \text{Hom}(X(T), U_K) \to \text{Hom}_G(X(T), U_K)$

is surjection by proposition [2.9,](#page-7-1) we see that under the isomorphism:

 $H_1(W, X_*(T)) \xrightarrow{\sim} \text{Hom}_G(X(T), C)$

 $H_1(U_K, X_*(T))$ corresponds to $\text{Hom}_G(X(T), U_K)$, so character associated with $H^1_{ct}(W, {}^L T^0)$ is unramified if and only if it is the lifting image of the following:

(31)
$$
H_{ct}^1(\mathbb{Z},^L T^0) \to H_{ct}^1(W,^L T^0)
$$

where the action of \mathbb{Z} on ${}^L T^0$ is determined by action of W. This proves (1).

If $\widehat{\lambda}$ is an invariant element of $X_*(T), w \in W$, then exists x, 1-cocycle of W in $X_*(T)$ such that $x(w) = \hat{\lambda}$, and when $u \neq w$ we have $x(u) = 0$. The class of x in Hom $(X(T), C)$ is the morphism:

(32)
$$
\lambda \mapsto \prod_{\tau} c_{\tau,w}^{\langle \lambda,\hat{\lambda} \rangle}
$$

Note that $\prod_{\tau} c_{\tau,w}$ is just the transfer(also called Verlagerung) of w. Recall the exact sequence:

$$
0 \longrightarrow U \longrightarrow C \stackrel{\nu}{\longrightarrow} \mathbb{Z} \longrightarrow 0
$$

We apply ν to above and get:

(33)
$$
\lambda \mapsto \langle \lambda, \mu(w) \hat{\lambda} \rangle
$$

which is in Hom $(X(T), \mathbb{Z})$. If χ is unramified, then is a 1-cocycle f of $W_{K/F}$ with values in ${}^L T^0$ whose lifting is the image of map [31,](#page-19-0) so for the corresponding homomorphism [33](#page-20-0) is given by $\hat{\lambda} \in X_*(T)^G$ and one $w \in W$ such that $\mu(w) = 1$. And:

$$
f(w)(\hat{\lambda}) = \chi(\hat{\lambda})
$$

5. Acknowledgments:

I want to thank Professor Anne-Marie Aubert for all her help and guidance. And give me a chance to see all these wonderful theorems. I also thank Zhixiang Wu for some beneficial talks.

REFERENCES

- [1] Emil Artin, John Torrence Tate, Class Field Theory, American Mathematical Soc., 1968
- [2] Automorphic Forms, Representations and L-Functions, Part 2, A. Borel and W. Casselman, Editors, Publication: Proceedings of Symposia in Pure Mathematics, AMS
- [3] C.J. Bushnell, G. Henniart, The Local Langlands Conjecture for GL(2). Grundlehren der Math. Wiss. 335, Springer, 2006.
- [4] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups (1974), Preprint, University of British Columbia.
- [5] (In Chinese) K. F. Lai, Zhijie Chen, Chunlai Zhao, Introduction to algebraic groups, 2006, SCIENCE PRESS ISBN:7030178610
- [6] C.D.Birkbeck, On the Langlands Correspondence for Algebraic Tori, available at: http://wwwf.imperial.ac.uk/ buzzard/MSRI/lang2.pdf
- [7] R. P. Langlands, Representations of Abelian Algebraic Groups, available at: https://msp.org/pjm/1997/181- 3/pjm-v181-n3-p12-p.pdf
- [8] J. P. Labesse, Cohomologie, L-groupes et fonctorialité, Compositio Mathematica, tome 55, n o 2 (1985), p. 163-184
- [9] J.S. Milne, Arithmetic Duality Theorems, Second Edition, available at: https://www.jmilne.org/math/Books/ADTnot.pdf
- [10] Jean-Pierre Serre, Corps locaux, Editions Hermann; Édition : 3. éd., corr (21 octobre 1997)
- [11] Cassels, Frohlich (Eds), Algebraic Number Theory, London Mathematical Society; Édition : 2nd Revised edition (12 mars 2010)