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1. Weil Groups

For this section, reference is [1] and the article number theoretic background by J.Tate in [2].
The language of class formation is axiomatic approach to handle local and global class field

theory. For example, when K is a finite algebraic number field, the formation module A can be
Kˆ, idèle group of K or idèle class groups of K.

Let G be a topological group,

Definition 1.1. A formation pG, tGF u;Aq consists of:
(1) A group G, together with an indexed family tGF uFPΣ of subgroups of G satisfying the following

conditions:
(a) Each element of tGF u is of finite index in G.
(b) Each subgroup of G which contains a member of the family tGF u also belongs to the family.
(c) The intersection of two members of the family tGF u also belongs to the family.
(d) Any conjugate of a member of the family tGF u is also a member of the family.
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(e) The intersection of all members of the family tGF u is the identity:
č

FPΣ

GF “ 1

(2) A G-module A such that A “
Ť

FPΣA
GF , in other words, such that every element of A is left

fixed by some member of the family tGF u.

We call the submodule AF :“ AGF in p2q above the F -level. The index pGF : GKq which is finite
by assumption is called the degree of the layer K{F and is denoted by rK : F s. The layer is called a
normal layer if GK is a normal subgroup of GF . The factor group GF {GK is called the galois group
of the normal layer. Fix notation: HrpK{F q :“ HrpGF {GK , AKq, and H2p˚{F q :“ lim

ÝÑK
H2pK{F q

where K{F normal.
If moreover, the following axioms are satisfied, then the formation is called a class formation.
Axiom 0: In each cyclic layer of prime degree, the Herbrand quotient h2{1 is defined and equal

to the degree.
Axiom I: (Field Formation Axiom) H1pK{F q “ 0 for all normal layer K{F .
Axiom II: For each field F , there is an isomorphism αÑ InvF α of the Brauer group into Q{Z,

such that:

(a) If K{F is a normal layer of degree n, then image of H2pK{F q is
1

n
Z{Z Ă Q{Z.

(b) For each layer E{F of degree n we have

InvE ResF,E “ n InvF

Let us assume pG, tGF u, Aq is a class formation, H2pK{F q is isomorphic to
1

n
Z{Z, any rational

number t which can be written with denominator n determines a unique α P H2pK{F q such that
InvF α ” t pmodZq, this α is called the cohomology class with invariant t. If we are working with
a complex X for the Galois group GK{F of the layer, and f : X2 Ñ AK is a cocycle in the class α,
call f is a cocycle with invariant t. The class with invariant 1{n generates H2pK{F q, it is called
fundamental class of layer K{F , cocycle f representing it is called a fundamental 2-cocycle.

Definition 1.2. (Weil Group for a normal layer) Let K{F be a normal layer in a class
formation. A Weil group pU, g, tfEuq for the layer K{F consists of the following objects:

(1) A group U .
(2) A homomorphism g of U onto the Galois group GK{F . And define for each intermediate field

F Ă E Ă K, the subgroup UE “ g´1pGK{Eq.
(3) A set of homomorphisms fE : AE – UE{U

c
E of the E-level onto the factor commutator group

of UE , one for each intermediate field.

such that pU, g, tfEuq satisfying:

(a) For each intermediate layer E1{E, F Ă E Ă E1 Ă K, the following diagram is commutative:

AE UE{U
c
E

AE1 UE1{U
c
E1

–

VE1{E

–
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where horizontal isomorphisms are induced by fE , fE1 , left vertical is inclusion map and right
vertical arrow is the group theoretic transfer (Verlagerung, see [1] Chapter XIII or Serre Chapter
VII) from UE to UE1 .

(b) Let u be an element of U and put σ “ gpuq P GK{F . Then it is clear that UuE “ UEσ . Then the
following diagram is commutative:

AE UE{U
c
E

AEσ UEσ{U
c
Eσ

σ

–

u

–

where the right vertical arrow is the map of the factor commutator groups induced by conju-
gation by u : UE Ñ uUEu

´1 “ UEσ .
(c) Suppose L{E is a normal intermediate level, F Ă E Ă L Ă K. Then the map g induces an

isomorphism
UE{UL – GK{E{GK{L “ GL{E

Since fL : AL
–
ÝÑ UL{U

c
L, UE{U

c
L can be viewed as a group extension of AL by GL{E as follows:

(1) 1 AL – UL{U
c
L UE{U

c
L UE{UL – GL{E 1

The operation of GL{E on AL associated with this extension is the natural one. Property pcq
requires that the class of extension in 1 is the fundamental class αL{E of the layer L{E.

(d) U cK “ 1

Theorem 1.1. (Existence of Weil Group for normal layers)) Let K{F be a normal layer
in a class formation. Then there exists a Weil group pU, g, tfEuq for the layer K{F .

We can see that a Weil group for a big normal layer K1{F1 contains information about all
intermediate layers K{F (see [1] Chapter XV Theorem 3). This suggests the definition of Weil
group for the whole class formation:

Definition 1.3. Let pG, tGF u, Aq be a topological class formation. A Weil group pU, g, tfF uq for
the formation consists of the following objects:
(1) A topological group U .
(2) A representation g of U onto the dense subgroup of the Galois group G of the formation.
(3) For each F of our formation, an isomorphism

fF : AF – UF {U
c
F

where U cF denotes the closure of the commutator subgroup UF .
In order to constitute a Weil group, pU, g, tfF uq must have the following properties:
(a) For each layer E{F , then the following diagram commutes:

AF UF {U
c
F

AE UE{U
c
E

–

V

–

where V is the transfer map.
(b) Let u P U and let σ “ gpuq P G. Then it is clear that upUEqu´1 “ UEσ , then the following

diagram commutes for each E:



4 SOME NOTES ON LOCAL LANGLANDS CORRESPONDENCE

AE UE{U
c
E

AEσ UEσ{U
c
Eσ

σ

–

u

–

(c) For each normal layer K{F , the class of the group extension

(2) 1 AK – UK{U
c
K UF {U

c
K UF {UK – GK{F 1

is the fundamental class of the layer K{F .
(d) We finally requires that

U Ñ lim
ÐÝ

U{U cK
is an isomorphism of topological groups.

If k is the ground field, then U{U cK for variable K normal over k is the Weil group for the normal
layer K{k.

For proofs of the following two theorems, please see [1, Artin-Tate] Chapter XV, theorem 7 and
theorem 8.

Theorem 1.2. Suppose pG, tGF u, Aq is a topological class formation satisfying the following three
conditions:
(a) The norm map NE{F : AE Ñ AF is an open map for each layer E{F .
(b) The factor group AE{AF is compact for each layer E{F .
(c) The Galois group G is complete.
Then there exists a Weil group pU, g, tfF uq for the formation, and it is unique up to isomorphism.

Theorem 1.3. Let pU, g, tfF uq be a Weil group for a class formation pU,GF , Aq. For each field F ,
the composed map

(3) AF UabF GabF
fF gabF

is the reciprocity map, where gabF is induced by g.
Moreover, if every normal layer K{k there is a cyclic L{k of the same degree, then in the

definition of Weil group for a class formation, we can substitute the above condition for pcq of
definition 1.3.

2. Local Langlands Correspondence for torus

This section mainly follows the original paper of R.P.Langlands [7] and paper by J.P.Labesse [8].
The structure (dividing proof into three parts, and preparations) follows the relevant materials in
[5]. And the article [6] gives me some help for understanding some details in the original paper.

2.1. Some Preparations.

2.1.1. Some definitions. LetK be an algebraic number field, let SK denote the set of prime divisors,
S8 the set of infinite prime divisors. Assume S is a finite subset containing S8, we define:

AK,S “
ź

vPS

Kv ˆ
ź

vRS

Ov

and give AK,S the product topology. We call AK.S the ring of S-adèles.
And define the ring of adèles of K to be: AK :“ lim

ÝÑS
AK,S .
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We know (see [11] Chapter II and Chapter VIII) the following facts: AK is locally compact;
AKpSq are all open subsets of AK ; if L{K is a finite Galois extension, then AL – AK bK L.

Now we define idèle group of a global field K:
Let S be as above, define group of S-idèles:

JK,S :“
ź

vPS

Kˆv ˆ
ź

vRS

Uv

where Uv is group of units in Kv, and give it the product topology.
The idèle group JK is defined to be JK :“ lim

ÝÑS
JK,S . Kˆ is discrete in JK .

We define idèle class group of CK to be JK{Kˆ.

2.1.2. Complements on group cohomology. We have known terminology for finite group cohomology
from [10] chapter VII. Since we have defined class formation, we add a few more terms:

Let K{F be a Galois extension of field F , G “ GalpK{F q, tEu denotes the set of all finite galois
extensions of F , GE is the subgroup of G fixing E. (pG, tGEu,Kq is a formation.)

The action of G on Kˆ makes it into a G-module, since pKˆqGE “ Eˆ, we know Kˆ “
Ť

Eˆ.(Kˆ is discrete G-module) Further, Eˆ is G{GE-module, we have:

Hn
ctpG,K

ˆq – lim
ÝÑ
E

HnpG{GE , E
ˆq

where Hn
ct is defined using continuous cocycles.

We also have Hilbert 90 for our case:

Theorem 2.1.
H1
ctpG,K

ˆq “ 0

The proof is similar to finite case, then pass to limit.

2.1.3. A Commutative diagram. In the following of this subsection, we fix an exact sequence:

1 C W G 1i j

where C is normal subgroup of W , and any G-module is viewed as a W -module through j, also a
C-module with trivial C-action.

For 1-cycle x : a ÞÑ xpaq of C on A, we define the corresponding 1-cycle of W on A by trivial
extension. For 1-cycle of W on A x : w ÞÑ xpwq, we define the corresponding 1-cycle on G:

σ ÞÑ
ÿ

jpwq“σ

xpwq

By explicitly computation of cycles, we have:

Proposition 2.2. The following sequence is exact.

(4) H1pC,Aq H1pW,Aq H1pG,Aq 0

There is an important result concerning the composition of Cor : H1pC,Aq Ñ H1pW,Aq and
Res : H1pW,Aq Ñ H1pC,Aq, and the NG map.
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Proposition 2.3. The following diagram commutes:

(5)
H1pC,Aq H1pW,Aq

NGpH1pC,Aqq H1pC,Aq

Cor

NG Res

Proof. From the exact sequence:

(6) 0 IG ZrGs Z 0ε

where ε : Zrgs Ñ Z defined by
ř

nσσ ÞÑ
ř

nσ. We tensor it with a Z-free G-module, and using
homological sequence, we have:

H1pG,Aq
„
ÝÑ H0pG, IG bAq “ IG bA

For G replaced by W , we have H1pW,Aq
„
ÝÑ H0pW, Iw bAq, similarly for C.

We will mainly work with the following diagram:

H1pC,Aq H1pW,Aq H0pW, IW bAqq

0 NGpH1pC,Aqq H1pC,Aq H0pC, IW bAq

Cor

NG Res

„

Res

„

We already know that the right square is commutative,
If x : w ÞÑ xpwq, x is 1-cycle ofW in A, then its image inH0pW, IWbAq is

ř

wpw
´1´1qp1bxpwqq,

its restriction to C is:
ÿ

σ

ÿ

w

pwσw
´1p1b xpwqq ´ wσp1b xpwqqq

We have relation: wτw “ cτ,wwσ, then above sum is:
ÿ

τ

ÿ

w

pc´1
τ,w ´ 1qwtp1b xpwqq

which equals to:
ÿ

cPC

˜

pc´1 ´ 1q
ÿ

cτ,w“c

1b wτxpwq

¸

this is homological class of the following 1-cycle in H1pC,Aq:

y : c ÞÑ
ÿ

cτ,w“c

wτxpwq

If support of x is in C, then:

ypcq “
ÿ

wτ bw
´1
τ “c

wτxpbq “
ÿ

τ

τxpτ´1pcqq “
ÿ

τ

τxpcq

So diagram 5 commutes. �
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2.1.4. Cup Product. There are some dual theorems due to Tate and Nakayama (see [10] IX section
8 and XI ANNEXE), of most interest to us is the explicit calculations of cup product:

From now on till the end of this document, pH is used to denote the Tate cohomological groups.

Proposition 2.4. Let A, B be G-modules.
(1) For a P AG, let fa : B Ñ AbB be G-morphism given by b ÞÑ ab b, then cup product:

pH0pG,Aq b pHnpG,Bq Ñ pHnpG,AbBq

is given by:
ras Y rxs “ f˚a prxsq

where ras denotes the class of a, rxs P pHnpG,Bq.
(2) Cup product:

pH1pG,Aq b pH´1pG,Bq Ñ pH0pG,AbBq

is induced by:
rf s Y rbs “ r

ÿ

σPG

fpσq b σbs

where b P B satisfies NGb “ 0, f is 1-cocycle.
(3) Cup product:

pH1pG,Aq b pH´2pG,Bq Ñ pH´1pG,AbBq

is induced by:
rf s Y rxs “ r

ÿ

σPG

fpσq b xpσqs

(4) Cup product:
pH´2pG,Aq b pH2pG,Bq Ñ pH0pG,AbBq

is induced by:
rxs Y rf s “ r

ÿ

σ,τPG

τxpσq b fpτ, σqs

Assume A is a free G-module, Q is a trivial G-module, then the above p3q gives a pairing:

H1pG,HompA,Qqq ˆH1pG,Aq Ñ H0pG,Qq “ Q

therefore we have a morphism:

(7) Φ : H1pG,HompA,Qqq Ñ HompH1pG,Aq, Qq

Proposition 2.5. If Q is Z-injective, then Φ above is an isomorphism.

Proof. See [7] p11-12 or [5] part 3 proposition 1.3.8.. �

Proposition 2.6. If G is a finite group, C is a class module, u P H2pG,Cq is a fundamental class,

1 C W G 1i j

is a group extension belongs to class u. Assume A is a Z-free G-module, Z “ Ker pNG : H1pC,Aq Ñ H1pC,Aqq,
then the following is exact:

(8) 0 Z H1pC,Aq H1pW,Aq H1pG,Aq 0

Proof. See [7] p12-13 or [5] part 3 proposition 1.3.8.. �
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2.1.5. Galois Cohomological Groups of multiplication groups and unit groups of local fields. In this
subsection, let us use F to denote the completion of a number field at a finite place v, F is the
algebraic closure of F . We use OF , UF , PF to denote Ov, Uv, Pv. We first check the axioms of
class formation are satisfied.

Let K{F be Galois extension of degree n, G “ GK{F , assume H is subgroup of G of order m,
from Hilbert 90 we have H1pG,Kˆq “ 0. Assume F 1 is invariant field of H, then H “ GK{F 1 .
Then H2pH,Kˆq is cyclic group of order m generated by uK{F . By calculations:

InvF 1pResuK{F q “ rF
1 : F s InvpuK{F q “ rF

1 : F s
1

n
“

1

m
“ InvF 1puK{F 1q

We have:

(9) uK{F 1 “ RespuK{F q

we know that G-module Kˆ is a class module with uK{F as its fundamental class. We can now use
Tate-Nakayama to get:

Theorem 2.7. For all n P Z, morphism given by cup product α ÞÑ α Y uK{F is an isomorphism
from pHnpG,Zq to pHn`2pG,Kˆq. Further, we have commutative diagram:

(10)

pHnpG,Zq pHn`2pG,Kˆq

pHnpH,Zq pHn`2pH,Kˆq

YuK{F

Res Res

YuK{F 1

Cor Cor

Proposition 2.8. Let K{F be finite Galois extension of Local field F , with Galois group G, then

(1) there exists an open subgroup V of UK such that pHnpG,V q “ 0, @n P Z.
(2) If the extension is unramified, then pHnpG,UKq “ 0, @n P Z.

Proof. See [11] Chapter IV. �

Now we do some calculations:

Proposition 2.9. If F is nonarchimedean local field, K{F is unramified Galois extension, G “

GpK{F q. If A is a finitely generated Z-free module and at the same time a G-module. Then the
norm morphism induces a surjective morphism:

NG : HompA,UKq Ñ HomGpA,UKq

Proof. For n ě 1, let UnK “ tx P UK | x ” 1 mod PnKu, they are all G-invariant. We only need to
verify:

NG : HompA,UK{U
1
Kq Ñ HomGpA,UK{U

1
Kq

NG : HompA,UnK{U
n`1
K q Ñ HomGpA,U

n
K{U

n`1
K q

are surjective.
Let kK “ OK{PK be the residue field of OK . UnK{U

n`1
K – kK as G-module. Then we consider:

NG : HompA, kKq Ñ HomGpA, kKq
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Assume kF “ OF {PF , then kF is isomorphic to ZrGsbkF as G-module. And HompA,ZrGsbkF q –
ZrGs bHompA, kF q, so

pH0pG,ZrGs bHompA, kF qq “ 0

that is to say, NG is surjective.
UK{U

1
K as G-module is isomorphic to kˆK . We consider:

NG : HompA, kˆKq Ñ HomGpA, k
ˆ
Kq

we want to show pH0pG,HompA, kˆF qq “ 0. Since G is a finite cyclic group and HompA, kˆKq is finite,
so all pHppG,HompA, kˆF qq have the same order. We shall prove:

pH1pG,HompA, kˆF qq “ 0

Let kK be the algebraic closure of kK , F is the subgroup of GalpkK{kKq generated by the Frobenius
automorphism σ0 : x ÞÑ x|kK |, then the following sequence is exact:

0 H1pG,HompA, kˆF qq H1pF ,HompA, k
ˆ

F qq

Then we only need to show H1pF ,HompA, k
ˆ

F qq “ 0, that is to say, for any 1-cocycle f of F , there
is a ϕ P HompA, kˆF q such that fpσ0q “ σ0ϕ´ ϕ. It is done by linear algebra. See [7] p17.

�

2.2. Weil Group and L-Group. First give some definitions:

CK “

#

idèle class group if K algebraic number field
Kˆ if K Local field

Now we have a special case of Weil group for our use:
(Weil group, special case) If F is local or global field, K{F is Galois extension with Galois

group GK{F . pG,GF , Cq be a class formation from knowledge of class field theory. Then Weil group
is defined in 1.3 has its form as an extension of GK{F through CK :

0 CK WK{F GK{F 0
i j

such that its factor set is a fundamental class u P H2pGK{F , CKq.
Now we assume that F and F 1 are local fields or global fields, with K (resp.K 1) Galois extension

of F (resp.F 1), ϕ is isomorphism from K to K 1 which maps F to F 1.
Moreover we add some conditions: if we require F and F 1 to be simultaneously local fields or

global fields, we require F 1 to be separable over image of F ; if F is global but F 1 is local, then
require F 1 to be separable over the closure of image of F .

Under these conditions, for ϕ we can associate a homomorphism:

ϕW : WK1{F ÑWK{F

Therefore for discrete GK{F -module A, we can associate a morphism of cohomological groups:

(11) ϕ˚W : H1
ctpWK{F , Aq Ñ H1

ctpWK1{F 1 , Aq

2.3. L-group of torus. Assume F is local field or global field, T is an algebraic torus defined
over F and splits over Galois extension K, XpT q is GK{F -module formed by characters of T . Let
X˚pT q “ HompXpT q,Zq
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2.4. L-homomorphisms from Weil Groups to L. We consider continuous homomorphism ϕ :
WK{F Ñ

LT , such that the following diagram commutes:

WK{F
LT

GK{F

ϕ

j
v

For two continuous homomorphism ϕ and ϕ1, if exists a t P LT 0pCq such that ϕpwq “ t´1ϕpwqt, then
we say that ϕ and ϕ1 are isomorphic. Denote the set of equivalence class of such homomorphism
ΦpT q.

If we denote ϕpwq “ papwq, jpwqq, where apwq P LT 0, then w ÞÑ apwq is continuous 1-cocycle
from WK{F to LT 0. We have

(12) t´1 ¨ pt1 ¸ σq ¨ t “ t´1 ¨ t1 ¨ σt¸ σ pt, t1 P LT 0q

Therefore, ϕ ” ϕ1 if and only if a and a1 represent the same cohomological class. We have:

ΦpT q – H1
ctpWK{F ,

LT 0q

2.5. Unramified equivalent class of homomorphisms. If F is a local field, if element rϕs P
ΦpT q such that ϕ|Inertia Group is trivial, we call rϕs is unramified, we use ΦunrpT q to denote all
unramified elements of ΦpT q.

If moreover, K{F is assumed to be unramified, then GK{F is generated by Frobenius automor-
phism σ0. Unramified ϕ is determined by ϕp1ˆσ0q “ tˆσ completely, where t P LT 0 is determined
up to conjugation. Therefore in this case we have:

(13) ΦunrpT q “ p
LT 0 ¸ σq{ Int LT 0

where Int LT 0 represents conjugation group with respect to LT 0.

3. Representation and Local L-function

3.1. Representation of Torus. If F is a local field, T pF q is locally compact Abelian group. From
Schur’s Lemma, we know that: Irreducible representations of T pF q in a Hilbert space are characters,
that is to say, continuous homomorphisms T pF q Ñ Cˆ.

For K a global field, from exact sequence:

1 Kˆ JK CK 1

we derive an exact sequence:

1 T pF q T pAF q HomGK{F pXpT q, CKq H1pGK{F , T pKqq

Therefore CF pT q “ T pAF q{T pF q can be seen as subgroup of HomGK{F pXpT q, CKq, to study
representations of T pF q (F local field) or representations of T pAF q{T pF q (F global field), we need
to study the following group:

ΠpT q “ HomctpHomGK{F pXpT q, CKq,C
ˆq

Remark. We can also consider the character taken values in complex numbers of absolute value 1,
see [9] Chapter 1 Section 8.
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3.2. Torus Theorem.

Theorem 3.1. There exists a canonical isomorphism:

ΦpT q – ΠpT q

And its improved version:

Theorem 3.2. (1) If F is a local field, then H1
ctpWK{F ,

LT 0q is canonically isomorphic to charac-
ter group of T pF q.

(2) If F is a global field, then we have a canonical homomorphism from H1
ctpWK{F ,

LT 0q to char-
acter group of T pAF q{T pF q, with finite kernel, and formed by the following class α: when K 1

is the completion of K with respect to some valuation, we have ϕ˚W pαq “ 0, where F 1 is the
algebraic closure of F in K 1, ϕ : K{F Ñ K 1{F 1 is an embedding.

3.3. Equivalent classes of unramified homomorphisms and characters. For this subsection,
we fix: T is a torus defined over a nonarchimedean local field, and splits over unramified extension
K{F with Galois group GK{F , let σ0 denotes the Frobenius automorphism of GK{F .

If a character is trivial over T pOF q “ HomGK{F pXpT q, UKq, then it is called unramified. The set
of unramified characters of T pF q is denoted as ΦunrpT q.

The exact sequence:

0 UK CK Z 0
v

where vpaq “ 1 if and only if a generates prime ideal PK . As GK{F -module it splits and leads to
the following exact sequence:

0 HomGK{F pXpT q, UKq HomGK{F pXpT q, CKq HomGK{F pXpT q, CKq 0

We immediately have:

Lemma 3.3. If the character of HomGK{F pXpT q, CKq “ T pF q is trivial on HomGK{F pXpT q, UKq “

T pOF q, then it is character of HomGK{F pXpT q,Zq “ X˚pT q
GK{F , and is contained in HompXpT q,Zq “

X˚pT q.

Using the above notations, we can describe the corollary of Theorem 3.2 p1q.

Corollary 1. (1) χ P ΠpT q is unramified if and only if its related element rf s P H1
ctpWK{F ,

LT 0q

is the lifting of the following:

H1
ctpZ,

LT 0q Ñ H1
ctpWK{F ,

LT 0q,

this lifting is induced by the following exact sequence:

0 UK WK{F Z 0
µ

where µ satisfies the following conditions: µpwq “ 1 implies jpwq “ σ0.
(2) Besides, if χ extends trivially to a character of X˚pT q and µpw0q “ 1, then for λ P LT 0pCq we

have

fpw0qpλq “ χpλq

(3) Isomorphism ΦpT q – ΠpT q induces bijection between ΠunrpT q and ΠunrpT q.
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4. Proof of Theorem 3.2

To simplify notations, in this section 4, we shall use C, W , G to denote CK , WK{F , GK{F .
Therefore we have an exact sequence:

0 C W G 0i j

and we can choose right coset representatives of C in W :twσ | σ P Gu, for fixed σ, τ P G,
Dcσ,τ P C such that:

wσwτ “ cσ,τwστ ,

and the fundamental class u P H2pG,Cq is 2-cocycle of cσ,τ .

4.1. Step 1:H1pC,X˚pT qq
G „
ÝÑ HomGpXpT q, Cq.

Theorem 4.1. Prove that there is a G-isomorphism:

(14) H1pC,X˚pT qq
G „
ÝÑ HomGpXpT q, Cq

Proof. From cup product:

xXpT q, X˚pT qy Ñ Z, xλ, pλy “ pλpλq

we get a bilinear morphism:

H0pC,XpT qq ˆH1pC,X˚ppT qqq Ñ H1pC,Zq
it commutes with the action of G on these three groups. Since H0pC,XpT qq and H1pC,Zq are

isomorphic to XpT q and C as G-modules, we have isomorphism

(15) H1pC,X˚pT qq Ñ HompXpT q, Cq

From Proposition 1.3.7, it maps 1-cycle y to the class of the following homomorphisms:

(16) λÑ
ź

cPC

cxλ,ypcqy

Since XpT q is direct sum of Z, this is an isomorphism.
�

4.2. Step 2: H1pW,X˚pT qq
„
ÝÑ H1pC,X˚pT qq

G.

Theorem 4.2. The transform from W to C leads to an isomorphism:

(17) H1pW,X˚pT qq
„
ÝÑ H1pC,X˚pT qq

G

Proof. From definition we know that:

H1pC,X˚pT qq
G{NGpH1pC,X˚pT qqq “ pH0pG,H1pC,X˚pT qqq.

Using isomorphism 15, we have an exact sequence:

(18) 0 NGpH1pC,X˚pT qqq H1pC,X˚pT qq
G

pH0pG,HompXpT q, Cqq 0

From 2.6, we have exact sequence:

(19) 0 Z H1pC,X˚pT qq H1pW,X˚pT qq H1pG,X˚pT qq 0

where Z “ Ker pNG : H1pC,X˚pT qqq Ñ H1pC,X˚pT qq.
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We have an obvious isomorphism:

(20) X˚pT q b C
„
ÝÑ HompXpT q, Cq

It maps pλb c to morphism λ ÞÑ cxλ,
pλy, with respect to this pairing, we have cup product:

H1pG,X˚pT qq ˆ pH2pG,Cq Ñ pH0pG,HompXpT q, Cqq

According to Tate-Nakayama Theorem, cup product with fundamental class u P pH2pG,Cq gives an
isomorphism:

(21) E : H1pG,X˚pT qq
„
ÝÑ pH0pG,HompXpT q, Cqq

According to proposition 2.4, this morphism maps 1-cycle z of G inX˚pT q to class of homomorphism

(22) λ ÞÑ
ź

σ,τ

cxλ,τzpσqyτ,σ

If we combine exact sequences 18, 19 and isomorphism 21, we get a commutative diagram:

(23)

0

0 Z H1pC,X˚pT qq H1pW,X˚pT qq H1pG,X˚pT qq 0

0 NGpH1pC,X˚pT qqq H1pC,X˚pT qq
G

pH0pG,HompXpT q, Cqq 0

0 0

NG Res E

The commutativity of left block is from proposition 2.3.
Fixing a 1-cycle of W in X˚pT q, x : w ÞÑ xpwq, for τ P G, s P W , exists a unique element cτ,w

and unique σ P G such that wτw “ cτ,wwσ. From the proof of proposition 2.3 Respxq is the 1-cycle
class of the following:

y : c ÞÑ
ÿ

cτ,w“c

wτxpwq

from 16, this cycle’s image in pH0pG,HompXpT q, Cqq is the class formed by:

(24) λ ÞÑ
ź

τ,w

cxλ,wτxpwqyτ,w

If w “ cwσ, c P C, then cτ,w “ wτ cw
´1
τ cτ,σ, therefore this product equals to

#

ź

σ,τ,c

pwτ cw
´1
τ q

xλ,wτxpcwσqy

+#

ź

σ,τ,c

cxλ,wτxpcwσqyτ,σ

+

First product is a norm, this means if we let:

zpσq “
ÿ

c

xpcwσq

Then homomorphism 24 have the same cohomological class as:

(25) λ ÞÑ
ź

σ,τ

cxλ,τzpσqyτ,σ
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But z is the image of x under the following homomorphism:

H1pW,X˚pT qq Ñ H1pG,X˚pT qq

However from 22, Epzq is the class of 25, so we have proved the commutativity of right square
of 23. Therefore by snake lemma, we know 17 is an isomorphism. �

4.3. Step 3: H1
ctpW,

LT 0q
„
ÝÑ HompH1pW,X˚pT qq,Cˆq.

Theorem 4.3. The pairing associated to valuation map pt, λq ÞÑ λptq (t P LT 0, λ P X˚pT q)

H1
ctpW,

LT 0q ˆH1pW,X˚pT qq Ñ Cˆ

leads to an isomorphism:

(26) H1
ctpW,

LT 0q
„
ÝÑ HompH1pW,X˚pT qq,Cˆq

Proof. We already have H1pW,X˚pT qq isomorphic to HomGpXpT q, Cq, this isomorphism can be
used to transform H1pW,X˚pT qq into a topological group.

Because Cˆ is Z-injective, from proposition 2.5, we have isomorphism

Φ : H1pW, LT 0q
„
ÝÑ HompH1pW,X˚pT qq,Cˆq

To prove 26, we only need to prove Φprf sq is continuous if and only if f is a continuous cocycle.
Let U denote the set formed by elements of norm 1, then we have exact sequence:

1 U C M 1

where M is Z or R, G acts trivially on it, this sequence splits as an sequence of Abel groups,
and the following is exact:

0 HompXpT q, Uq HompXpT q, Cq HompXpT q,Mq 0λ µ

Proposition 4.4. We have an injective morphism:

ψ : pNGpHompXpT q, Cqq XHompXpT q, Uqq{NGpHompXpT q, Uqq Ñ

pH´1pG,HompXpT q,Mqq{µ pH´1pG,HompXpT q, Cqq

Proof of this proposition:

Proof. If z “ NGx P HompXpT q, Uq, x P HompXpT q, Cq, and y “ µpxq, then NGpyq “ NGpµpxqq “
µpNGxq “ 0. Thus we define the morphism ψ to be the map sending z to the quotient image y of
y on the right hand side. This is well defined: if x has value in HompXpT q, Uq, it is 0. If x and x1

satisfy NGx “ NGx
1, we have x´ x1 “ r, so r P HompXpT q, Uq, µpxq “ µpx1q ` µprq “ µpx1q.

Injectivity: We need to show that if ψpzq “ 0 for z “ NGx, and x P HompXpT q, CKq, then
Dx1 P HompXpT q, Uq such that NGx “ NGx

1.
If the image is 0, since y P IG HompXpT q,Mq, we can choose x such that y “

ř

σpσ
´1vσ ´ vσq

for vσ P HompXpT q,Mq, let uσ be the elements in HompXpT q, Cq such that µpuσq “ vσ, then
x1 “ x´

ř

σpσ
´1uσ ´ uσq P HompXpT q, Uq and NGx “ NGx

1, µpx1q “ µpxq “ 0. �

Now we can show NGpHompXpT q, Cqq is closed in HomGpXpT q, Cq.
Case 1:

Since we have HompXpT q, Uq – T pOKq – pUKq
d where d is rank of lattice XpT q, it is compact.

Note NG is a continuous map, so NGpHompXpT q, Uqq is compact subgroup of HompXpT q, Uq,
thus closed in HompXpT q, Uq, hence in NGpHompXpT q, CqqXHompXpT q, Uq. And since the above
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Proposition gives injectivity of ψ, we knowNGpHompXpT q, Uqq is of finite index inNGpHompXpT q, CqqX
HompXpT q, Uq, so NGpHompXpT q, Cqq XHompXpT q, Uq is closed in HompXpT q, Uq

Except for K archimedean or global, we have HomGpXpT q, Uq is open in HomGpXpT q, Cq, and

NGpHompXpT q, Cqq XHomGpXpT q, Cq “ NGpHompXpT qq, Cq XHompXpT q, Uq

is closed. From knowledge of topological groups, we knowNGpHompXpT q, Cqq is closed in HomGpXpT q, Cq.
It is also open because M discrete.
Case 2:
In the archimedean or global field case,

1 U C M “ Rą0 1

splits as a G-module, we have the following split exact sequence:

0 HompXpT q, Uq HompXpT q, Cq HompXpT q,Mq 0λ µ

So we have

(27) HompXpT q, Cq – HompXpT q, Uq ˆHompXpT q,Mq

and
NGpHompXpT q, Cqq – NGpHompXpT q, Uqq ˆNGpHompXpT q,Mqq

We also have:

HomGpXpT q, Cq – HomGpXpT q, Uq ˆHomGpXpT q,Mq

Since M “ Rą0 is divisible, we have pH0pG,HompXpT q,Mqq “ 0, which means:

NGpHompXpT q,Mqq “ HomGpXpT q,Mq

Combined with the fact thatNGpHompXpT q, Uqq is closed in HomGpXpT q, Uq, we seeNGpHompXpT q, Cqq
is closed in HomGpXpT q, Cq.

It is also open in it because NGpHompXpT q, Uqq is of finite index in HomGpXpT q, Uq. Now we
have: for ϕ P HomGpXpT q, Cq, it is continuous if and only if ϕ ˝NG is continuous.

We have the following lemma which can be proved easily:

Lemma 4.5. A 1-cocycle x of H1pW, LT 0q is continuous if and only if its restriction to H1pC, LT 0q

is continuous.

The following diagram is commutative:

H1pW, LT 0q HompH1pW,X˚pT qq,Cˆq

H1pC, LT 0q HompH1pC,X˚pT qq,Cˆq

„

Res yCor

„

where yCor is induce by Cor : H1pC,X˚pT qq Ñ H1pW,X˚pT qq. rf s P Z1pC, LT 0q under the
bottom morphism E is the map sending pλb a P HompX˚pT q b C,Cˆq – HompH1pC,X˚pT qq,Cˆq
to xpλ, fpaqy, this is continuous.
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4.3.1. Proof of Theorem 3.2 (2). This part, I mainly follow [9] Chapter 1 Section 8 and [8].
Here are some preparations:
Let F be a global or local field, and let K be a finite Galois extension of F . Let M be a finitely

generated torsion free GK{F -module, then we define:

(28)
M 1 :“ HomctpM,Cˆq

M : :“ HompM,Cˆq

They are again GK{F -modules, we regard these groups as WK{F -modules. If we write WK{F “
Ů

wgCK as union of disjoint left cosets. As constructed in [8] section 3, we define:

Cor : H1pCK ,M
:q Ñ H1pWK{F ,M

:q

as the map sending α : CK ÑM : to map Corpαq : WK{F ÑM : such that

pCorpαqqpwq “
ÿ

gPG

wgαpw
´1
g wwg1q, where wwg1 ” wg modCK

From definition of Weil groups 1.3, let pG,GF , Cq be a class formation, if we let GK denote an
open normal subgroup of finite index of G, CF “ CG. then we have:

0 CK WK{F GK{F 0
i j

And it corresponding to the canonical class u P H2pGK{F , CKq.
For any WK{F -module M , the Hochschild-Serre spectral sequence gives an exact sequence:

0 H1pGK{F ,M
:q H1pWK{F ,M

:q H1pCK ,M
:qGK{F H2pGK{F ,M

:q
Inf Res τ

we can make the last morphism τ (called the transgression) explicitly in our case:

Lemma 4.6. If CK acts trivially on M , then the transgression

τ : H1pCK ,M
:qGK{F Ñ H2pGK{F ,M

:q

is the negative of the map ´Y u induced by the pairing

HompCK ,Mq ˆ CK ÑM

Proof. Write WK{F “
Ů

g CKwg, and let wgwg1 “ cg,g1wgg1 . Then pcg,g1q is a 2-cocycle representing
u. Let α P HomGK{F pCK ,Mq and define βpcwgq “ αpcq, c P CK . Then

(29)

dβpg, g1q :“ dβpwg, wg1q

“ gβpwg1q ´ βpwgwg1q ` βpwgq

“ ´αpcg,g1q

�

which equals ´pαY uqpg, g1q.

Lemma 4.7. The corestriction map Cor : H1pCK ,M
:q Ñ H1pWK{F ,M

:q factors through H1pCK ,M
:qGK{F .
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Proof.
Corphαqpwq “

ÿ

g

wgwhαpw
´1
h w´1

g wwg1whq

where g1 is such that wwg1 ” wg mod CK . wpwg1whq ” pwgwhqmod CK . Therefore the class of
Corphαq is the same as that of Corpαq, so Corpph´ 1qαq “ 0 in H1pWK{F ,M

:q. �

Lemma 4.8. The composite

H1pCK ,M
:q H1pWK{F ,M

:q H1pCK ,M
:q

Cor Res

is equal to NG.

Proof. When w P CK , for α P Z1pCK ,M
:q and w PWK{F ,

Corpαqpwq “
ÿ

g

gαpg´1wgq “ pNGαqpwq.

�

Theorem 4.9. For any finitely generated torsion free GK{F -module M , the corestriction map
defines an isomorphism:

Φ : HomctpCK ,HomctpM,CˆqqGK{F
«
ÝÑ H1

ctpWK{F ,HomctpM,Cˆqq

Proof. Write G in short for GK{F . First proof that the corestriction defines an isomorphism

HompCK ,M
1qGK{F Ñ H1pWK{F ,M

:q

and then shows that is makes continuous homomorphisms correspond to continuous cocycles.

(30)
0 pH´1pG,HompCK ,M

:qq HompCK ,M
:qG HompCK ,M

:qG pH0pG,HompCK ,M
:qq

0 H1pG,M :q H1pWK{F ,M
:q H1pCK ,M

:qG H2pG,M :q

«

NG

Cor Id «

Inf Res

The horizontal line is the definition sequence of Tate cohomology groups, the bottom line is
Hochschild-Serre spectral sequence, the two vertical isomorphisms are consequences of Tate-Nakayama,
the third square commutes because of lemma 4.6. The second square commutes because of lemma 4.8.
The first square commutes by explicitly calculating each maps, see [9] Lemma 8.7. By five lemma,
Cor in 30 is an isomorphism.

�

Next we show it makes continuous homomorphisms correspond to continuous:
The following is from [8] section 5 and [9] lemma 8.10.

Proposition 4.10. If D is an (real) abelian connected Lie group, equipped with an action of
G “ GK{F (analytic) then the natural homomorphism:

pHppG,HomctpCK , Dqq Ñ pHppG,HompCk, Dqq

is an isomorphism for all p P Z.

Proof. (a) K and F are local archimedean. The only nontrivial case is F “ R and K “ C, here
CK “ Cˆ, the exact sequence:

0 Z R2 Cˆ 0
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gives exact sequence:

0 HomctpCˆ, Dq HomctpR2, Dq HomctpZ, Dq 0

0 HompCˆ, Dq HompR2, Dq HompZ, Dq 0

because D is divisible hence Z-injective and it is an abelian connected Lie group. From
HomctpC, Dq and HompC, Dq cohomologically trivial, we know that we can replace CF with
Z which is discrete and it is obvious.

(b) F and K nonarchimedean local fields. If UK the group of units of Kˆ, we have Kˆ{UK – qZ;
and if UnK is the subgroup of units congruent to 1 module n-th power of maximal ideal, we
know from [10] Chapter XII, section 3 that U1

K and U1
K{U

n
K are cohomologically trivial for

all n if K{F is unramified. We know that if A is cohomologically trivial and D is divisible,
then HompA,Dq is also cohomologically trivial. So HompU1

K , Dq and HompU1
K{U

n
K , Dq are

cohomologically trivial. Because

HomctpU
1
K , Dq “ lim

ÝÑ
HompU1

K{U
n
K , Dq

we know HomctpU
1
K , Dq is cohomologically trivial. So again we can replace CK by Kˆ{U1

K

which is discrete. For the general case, replace UnK by V nK , where VK is as in proposition 2.8,
the proof is similar.

(c) F global. Here CK is the idèle class group. Define V Ă CF to be
ś

Vv where Vv “ pOˆv for v
nonarchimedean prime that is unramified in K, and Vv is a subgroup as in above case for the
rest primes. It is therefore enough to prove the lemma for CF {V . In the function field case,
this is discrete and in the number field case this is an extension of a finite group by Rˆ. In
the first case it is done, in the second case by exponential shows that Rˆ is the quotient of a
uniquely divisible group by a discrete group.

�

Now we have:

Corollary 2. The map:
Cor : HomctpCK , Dq

G Ñ H1
ctpWK{F , Dq

is bijective.

Proposition 4.11. If ϕ P Z1
c pWK{F , Dq we say ϕ if not ramified is its restriction to UK is trivial,

and we note H1
unrpWK{F , Dq, which by the proof of proposition 4.10, is isomorphic to HompZ, DqG.

And we also derive a lemma:

Lemma 4.12. If D is a compact group, then IG HomctpCK , Dq is closed in HomctpCK , Dq, equipped
with compact convergence topology.

Proof. In proposition 4.10, applied to p “ ´1, we have :

0 “ Ker
´

pH´1pG,HomcpCK , Dqq Ñ pH´1pG,HompCK , Dqq
¯

“

´

IG HompCK , Dq
č

HomctpCK , Dq
¯

{IG HomctpCK , Dq

�

What we concern is D “M 1 “ HompX˚pT q,Cˆq, following [8] section 6, we separate it into two
cases: R and R{Z by the exact sequence
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0 Z R2 Cˆ 0

then conclude for Cˆ.

Proposition 4.13. We have an isomorphism:

Γ : HomctpCK bM,CˆqG Ñ Homct

`

CK bMq
G,Cˆ

˘

Proof. Now suppose D “ HompM,Sq where M “ X˚pT q is a ZrGs-module which as Z-module is
free and of finite type, and S is a real connected abelian Lie group where G acts trivially on it.
Under this hypothesis, D is a connected abelian Lie group.

We have a natural isomorphism

HomctpCK bX˚pT q, Sq Ñ HomctpCK ,HompX˚pT q, Sqq

where CK bX˚pT q – CnK (n is rank of XpT q), equipped with product topology.
Now first suppose S “ R{Z, we see HomctpCK , Dq is just the Pontryagin dual of CK bX˚pT q,

then we claim the orthogonal(in sense of topological groups) of the subgroup pCK b X˚pT qq
G in

CK bX˚pT q is the closed subgroup

IG HomctpCK bX˚pT q, Sq

Now prove this claim by showing: for any σ P G and any f P HomctpCKbX˚pT q, Sq, pσf´fqpaq “
fpσ´1paqq ´ fpaq “ 0 if a “ σpaq (a P CK bX˚pT q). So IG HomctpCK bX˚pT q, Sq is contained in
the kernel of the following restriction:

HomctpCK bX˚pT q, Sq Ñ HomctppCK bX˚pT qq
G, Sq

Conversely, if a R pCK bX˚pT qq
G, there is a σ P G such that a ‰ σpaq, since Pontryagin dual

separates points, there is a f such that:

fpσ´1paq ´ aq ‰ 0

so pσ ´ 1qfpaq ‰ 0, the orthogonal of IG HomctpCK b X˚pT q, Sq is included in the orthogonal of
the kernel. And we conclude by lemma 4.12.

When T “ R, notice that homomorphism to R is trivial on compact subgroups, we have:

HomctpCK bX˚pT q,RqG “ HompX˚pT q,RqG “ HompX˚pT q
G,Rq “ HomctppCK bX˚pT qq

G,Rq

�

We have another version of this result, in [9] corollary 8.11. We don’t prove it since it is not
needed in our use.

Theorem 4.14. Let F be a global or local field, and let M be a finitely generated torsion free
GF -module, there is a canonical isomorphism:

HomctppC bMq
GF ,Cˆq «ÝÑ H1

ctpWF ,HomctpM,Cˆqq

where C “
Ť

CF .

Now Let’s prove p2q of theorem 3.2.
Recall that, in 3.1, we have:

1 T pF q T pAF q HomGK{F pXpT q, CKq H1pGK{F , T pKqq
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(Note that pX˚pT q b CKqGK – HomGpXpT q, CKq.) We have a surjection with finite kernel:

Ψ : HomctppX˚pT q b CKq
G,Cˆq Ñ HomctpT pAKq{T pKqq,Cˆq

Then precompose it first with isomorphism Γ in proposition 4.13, then precompose it with isomor-
phism Φ´1 gotten from Theorem 4.9 taking M “ X˚pT q:

We get a surjective map Ψ ˝ Γ ˝ Φ´1:

H1
ctpWK{F ,

LT 0q� HomctpT pAKq{T pKqq,Cˆq

Then the following diagram commutes:

H1
ctpWK{F ,

LT 0q HomctpT pAKq{T pKq,Cˆq

ś

H1
ctpWK1{F 1 ,

LT 0q
ś

HomctpT pK
1q,Cˆq«

we know that right vertical and lower horizontal map are injective, so we have the kernels of the
remaining maps are the same. The theorem is proved.

�

4.3.2. Proof of Corollary 1 p1q, p2q. Now we can prove Corollary 1 p1q, p2q:
Note that T is torus defined over a nonarchimedean local field F , splits over unramified extension

K{F

Proof. There is an exact sequence:

0 U W Z 0
µ

such that µpwq “ 1 if and only if the transfer of w P C generates the prime ideal PK . Since the
norm morphism:

NG : HompXpT q, UKq Ñ HomGpXpT q, UKq

is surjection by proposition 2.9, we see that under the isomorphism:

H1pW,X˚pT qq
„
ÝÑ HomGpXpT q, Cq

H1pUK , X˚pT qq corresponds to HomGpXpT q, UKq, so character associated with H1
ctpW,

LT 0q is un-
ramified if and only if it is the lifting image of the following:

(31) H1
ctpZ,

LT 0q Ñ H1
ctpW,

LT 0q

where the action of Z on LT 0 is determined by action of W . This proves p1q.
If pλ is an invariant element of X˚pT q, w PW , then exists x, 1-cocycle of W in X˚pT q such that

xpwq “ pλ, and when u ‰ w we have xpuq “ 0. The class of x in HompXpT q, Cq is the morphism:

(32) λ ÞÑ
ź

τ

cxλ,
pλy

τ,w

Note that
ś

τ cτ,w is just the transfer(also called Verlagerung) of w. Recall the exact sequence:

0 U C Z 0ν
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We apply ν to above and get:

(33) λ ÞÑ xλ, µpwqpλy

which is in HompXpT q,Zq. If χ is unramified, then is a 1-cocycle f of WK{F with values in LT 0

whose lifting is the image of map 31, so for the corresponding homomorphism 33 is given by
pλ P X˚pT q

G and one w PW such that µpwq “ 1. And:

fpwqppλq “ χppλq

�
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