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2. Notations and conventions

First, let us fix some notations through out this article:
k: an algebraically closed field of characteristic p.
K0 : the fraction field of the Witt ring W pkq.
K0: an algebraic closure of K0.
E Ą F Ą Qp : a sequence of extensions with each one finite over the later one.
O˚ : the ring of integers of ˚, $˚: an uniformizer of O˚, ˚ (resp. ˚sep, resp. ˚un) the algebraic
closure (resp. separable closure, resp. maximal unramified extension) of ˚ taken in K0.
Q`: a fixed algebraic closure of Q` for some ` prime, ` ‰ p.
v˚: normalized valuation of ˚, i.e. v˚p$˚q “ 1.
F :“ OF {$F the residue field, and q “ CardpFq the cardinal of F.
Fp: the residue field of Qp.
p˚: the completion of an algebraic closure of ˚, e.g. Cp :“ pQp.
Ĕ: the completion of the maximal unramified extension of E taken in xK0, L :“ F̆ .
Γ :“ GalpF {F q the absolute Galois group of F where F is the algebraic closure of F taken in K0.
σ : the arithmetic Frobenius automorphism of L{F , I :“ GalppF {Lq – GalpF {Funq, IE :“

GalppE{Ĕq.
WF {F (resp. W 1

F {F
) : the Weil group (resp. Weil-Deligne group) of F over F (see [Tate]), W ab

F :
the abelianized Weil group.
MΓ: the subgroup of invariants for a Γ-module M , MΓ : the group of coinvariants of M , Mtors:
the torsion subgroup of M .

For any reductive group G over F , let G0 denote its connected component containing identity and
π0pGq denote the set of all connected components of G. We assume G is connected if without any
other specification. Let Gss denote the derived group of G (it is semisimple) and let Gsc denote the
universal covering group of G (it is simply connected). ZpGq or abbreviated as Z when no confusion
will be caused, is the center of G and set Gad :“ G{Z. For any field K 1 containing F , GK1 denotes
the base change; for any finite extension E Ą F , and G a reductive group defined over E, the
restriction of scalar ResE{F pGq is as define in [Mil1] §2.i.. For any G of multiplicative type, ibid.
§12.f., e.g. a torus, X˚pGq :“ HompG,Gmq is called the character group andX˚pGq :“ HompGm, Gq
is called the cocharacter group (Hom here denotes the morphisms of algebraic groups).

Let us fix more notations when we consider quasi-split groups as this assumption usually makes
many definitions explicit and is satisfied in many situations: Let B be a Borel subgroup of G and
T a maximal torus contained in B. Let Φ (resp. Φ`, resp. ∆˚) be the associated (resp.positive,
resp.simple) root system with respect to fixed triple pG,B, T q. Let Φ˚ denote the coroot system,
and other notations with ‘co-’ follow similarly. Denote by Ψ0pGq :“ pX˚,∆˚, X˚,∆˚q the based
root datum, [Mil1] Appendix C Definition C.28. Denote byW :“ NpT qpLq{ZpT qpLq the Weyl group
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of G where NpT qpLq (resp. ZpT qpLq) is the L-points of the normalizer (resp. centralizer) of T in
G. Denote the inner conjugate action by Intpgqp¨q “ gp¨qg´1.

Let G be a connected reductive group defined over F , then Γ acts on Ψ0pGF q, a splitting of a
connected reductive group G is a triple pT,B, tXαuαP∆˚q, where T is a maximal torus of G, B is
a Borel subgroup of G that contains T , and Xα is a nonzero element of the root space LiepGqα,
where LiepGq is the Lie algebra associated to G, defined in [Mil1] §10.b..

Let pπ, V q be any representation of G, we denote the contragredient representation of pπ, V q by
pπ_, V _q (cf. [Mil1] p471). We call a representation pπ, V q of G a F -rational representation if π
is a rational homomorphism of F -algebraic groups. For any irreducible representation ρ of G, we
denote the ρ-isotypical component of V by V rρs.
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3. Introduction

Already by 1930 a great deal was known about (local) class field theory. By work of Kronecker,
Weber, Hilbert, Takagi, Artin, Hasse, and others, one could classify the abelian extensions of a local
field F , in terms of data which are intrinsic to F . Namely, there is a reciprocity map (or called
Artin map)

ArtF : Fˆ
„
ÝÑ GalpF ab{F q

where F ab means the maximal abelian extension of F . This map is continuous and has dense image,
which is the abelianized Weil group W ab

F .
We can formulate it in a local Langlands correspondence way (special attention should be paid

to topology):
Denote by A1pF q the set of isomorphism classes of 1-dimensional continuous irreducible complex

representations pπ, V q of GL1pF q, that is to say GL1pF q “ Fˆ Ñ AutCptvuq “ GL1pCq. On
the other hand, we denote by G1pF q the set of 1-dimensional representations of WF (continuous
homomorphisms)WF Ñ GL1pCq. ThenWF Ñ GL1pCq passes to quotient: WF ÑW ab

F Ñ GL1pCq.
Therefore the existence of a reciprocity map is equivalent to the existence of a bijection:

A1pF q Ñ G1pF q

Similar but more refined results called Local Langlands correspondence are proved (for GLnpF q)
or conjectured for all reductive groups.

Now come back to the Artin map, it is natural to ask how to describe ArtF explicitly. It is
perfectly solved by Lubin and Tate. Let pFˆ be the profinite completion of F , and write pFˆ “

U0 ˆ$
pZ
F where U0 :“ OˆF is the group of units of F . The fixed field of the image ArtpU0q is the

maximal unramified extension Fun with GalpFun{F q – pZ. The fixed field of the image Artp$
pZq

is an infinite totally ramified extension of F denoted by F$ with GalpF${F q – U0. For example,
F “ Qp, then $Qp “ p, Qabp by Kronecker-Weber theorem equals to Qcycl

p the maximal cyclotomic
extension of Qp, i.e. the extension by adding all roots of unit.

It is easy to construct Qunp . Let µs be the set of s-th root of 1 in Qp for some s P N such that
ps, pq “ 1. The discriminant of Xs ´ 1 is a unit in Zp. The field Qprµss is unramified over Qp.
Moreover, the residue field of Qprµss is the splitting field of Xs ´ 1 over Fp :“ Z{pZ, so it has pf

elements with f being the smallest positive integer such that s|pf ´ 1. Therefore
Ť

p-sQprµss is an
unramified extension with residue field Fp.

We can also construct the totally ramified extension. We have pQpqp “
Ť

ně0 QprµpnpZpqs where
µpn are the p-torsion parts of Gm (which is closely related to a function rpsf pT q “ fpT q “ xp ´ 1)
and Zp is closure of Zp taken in a fixed algebraic closure Qp of Qp. We see tQprµpnsuně0 as a tower
formed by points, that is to say, 0-dimensional varieties. The action

prms, ζq ÞÑ ζm : Zp{pnZp ˆ µpn Ñ µpn

makes µpn a free Zp{pnZp-module of rank 1, thus we can regard µpn as a Zp-module, isomorphic
to Zp{pnZp. There is an isomorphism

pZp{pnZpqˆ Ñ GalpQprµpns{Qpq
when passing to limit, we have an isomorphism

Zˆp Ñ GalppQpqp{Qpq
Move to a different field: When F is a finite extension of Qp, the above process need to be

changed. Those roots of unity µpnpZpq arising as the p-torsion points in the multiplicative group
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Gm, should be changed to q-torsion points of some other geometric objects where q is the cardinal of
residue field of F . For example, when F is an imaginary quadratic field, we shall use elliptic curves
with complex multiplication. The real difference is that we are changing from fpT q “ xp

n

´ 1 to
some other (formal) polynomial to express “torsion points”. Therefore we need to introduce formal
groups or p-divisible groups.

Move to the nonabelian case:
Let G be a reductive group. Via the local Langlands correspondence, we can relate certain

representations of G to some homomorphisms of Galois groups (to be more precise: certain classes
of homomorphisms to the LG). Therefore, like the case for the Artin map, we have the desire to
describe the correspondence. In order to achieve this, we need to generalize the above process to the
nonabelian cases. The situation is much more complicated because we no longer have uniqueness
when passing from objects over residue field to original fields. For example for GLnpF q, we need to
consider moduli spaces of certain elements and the formal objects defined by them. Then we look
at rigid fibers of those formal objects: these rigid fibers form a tower, called the Lubin-Tate tower.
We consider their `-adic cohomology groups to capture information. For a general reductive group,
we need to use Rapoport-Zink spaces or local Shimura varieties. In the process of building these
theories, we see the need of more general theory of algebraic geometry to describe the inverse limit
of rigid fibers. This motivates us to go to the perfectoid world.
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4. General theory

4.1. σ-linear algebra. Recall that we require the field k to be algebraically closed of characteristic
p, we set K0 “W pkq and E Ą F Ą Qp to be a sequence of finite extensions and F to be the residue

field of F . We use L to denote the completion of maximal unramified extension of F in xK0, which
equals F.K0. The Frobenius automorphism of L{F is denoted by σ.

Definition 4.1. A σ-L-space or called F -isocrystal over F, is a finite dimensional vector space V
over L together with a σ-semilinear bijection ϕ : V Ñ V (i.e. ϕ is a group homomorphism such that
ϕpαvq “ σpαqϕpvq for all α P L and v P V ). The dimension of V is called the height of σ-L-space
pV, ϕq.

When F “ Qp, the σ-L-spaces are called F -isocrystals.
For two σ-L-spaces pV, ϕq and pV 1, ϕ1q, a homomorphism between them f : V Ñ V 1 is a L-linear

map such that fpϕpvqq “ ϕ1pfpvqq for all v P V .

In the name, F stands for “Frobenius”. The F -isocrystals form a Qp-linear category. Moreover,
since we assume k to be algebraically closed, it is a noetherian, artinian semi-simple abelian category,
see [RZ] §1.1. Its simple objects are parametrized by elements of Q. For λ P Q, λ “ r{s with r, s P Z
and pr, sq “ 1, it corresponds to the simple object

(4.1) Eλ “

¨

˚

˝

Ks
0 ,

¨

˚

˝

0 1
. . . 1

pr 0

˛

‹

‚

¨ σ

˛

‹

‚

.

and Dλ “ EndpEλq is a division algebra (defined in [Mil2] §IV Example 1.8), with center Qp and
invariant ´λ.

For any σ-L-space, we write it as V “
À

Vλ for its isotypical decomposition. An σ-L-space is
called isotypic if and only if there are integers r, s with s ą 0 and a OL-lattice M in V such that

ϕspMq “ prM.

Definition 4.2. A filterd isocrystal over L is a triple pV, ϕ,F‚q given by an F -isocrystal pV, ϕq and
a decreasing filtration F‚ on the vector space V bK0 L such that Fr “ p0q and Fs “ V bK0 L for
some r, s P Z.

A subobject pV 1, ϕ1,F 1q of pV, ϕ,Fq is given by a subvector space V 1 which is ϕ-stable such that
V 1 bK0

L is equipped with the induced filtration.

Definition 4.3. A filterd isocrystal pV, ϕ,F‚q over L is called weakly admissible if for every sub-
object pV 1, ϕ1,F 1‚q we have

ÿ

i ¨ dim grF 1pV
1 bK0

Lq ď ordp detpϕ1q,

and when pV 1, ϕ1,F 1‚q “ pV, ϕ,F‚q, we have equality.

We can construct a map from the category of finite-dimensional F -rational representations V of
G to the category of σ-L-spaces

V ÞÑ pVL, ϕq :“ pV bF L, b ¨ pidV bσqq.
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4.2. Kottwitz map and Newton map.

Definition 4.4. Two elements b, b1 P GpLq are called σ-conjugated, denoted by b σ
„ b1, if there is a

g P GpLq such that b1 “ gbσpgq´1. Let rbs denote the σ-conjugacy class of b, and BpGq “ BpG,F q
denote the set of σ-conjugacy classes in GpLq.

Remark 1. The set BpGq is independent of the choice of k, i.e. if k1 Ă k is algebraically closed,
then the resulting BpG,F q are the same. It is proved in [RZ] 1.16.

Recall the composition of canonical homomorphisms:

ρ : Gsc Ñ Gss Ñ G

Definition 4.5. First assume G splits over F for a maximal split torus T Ă G, i.e. G contains a
maximal torus T – pGmqn over F , for some n P N, consider the canonical morphism ρ as above.
We write T pscq for ρ´1pT q Ă Gsc. Set π1pGq “ π1pG,T q :“ X˚pT q{ρ˚pT

pscqq. This abelian group is
called the algebraic fundamental group of G.

Now let G be any (not necessarily split) connected reductive group. By the algebraic fundamental
group of G we mean π1pGF q.

This definition is from [Boroi], We have canonical identifications with what was used originally
by Kottwitz (cf. [Boroi] proposition 1.10, and [Kot1]):

π1pGqΓ “ X˚pZp pGqΓq

where pG is the connected component of LG, LG is L-group defined in [Bor] §I.2.
In particular,

(4.2)
X˚pZp pGqΓq “ π1pGqΓ

Hompπ0pZp pGq
Γq,Cˆq “ pπ1pGqΓqtors

Let T Ă B Ă GF be a maximal torus and a Borel subgroup defined over F , then the action of
Γ on X˚pT q is defined by

(4.3) τ ‚ µ :“ Intpgq ˝ τpµq, @τ P Γ, @µ P X˚pT q

where g P GpF q satisfies Intpgq ˝ τpT,Bq “ pT,Bq, and τpµqp¨q “ τµpτ´1¨q. It induces an action of
Γ on π1pGq.

Kottwitz constructed in [Kot4] §7 a group homomorphism

κ̃G : GpLq Ñ X˚pZp pGqIq “ π1pGqI

When Gder is simply connected, κ̃G factors through Gab : κ̃G “ κ̃Gab ˝ pG, where pG : G Ñ Gab is
the natural projection. There is also a homomorphism

(4.4) vG : GpLq Ñ HompX˚pZp pGq
I ,Zqq

sending g P GpLq to the homomorphism χ ÞÑ vLpχpgqq from X˚pZp pGqq
I “ HomLpG,Gmq to Z,

where vL is normalized so that $L has value 1. From the definition of vG, we have vG “ vGab ˝ pG
for any G.

Then there is the relation vG “ qG ˝ κ̃G, where qG is the natural surjective map

(4.5) qG : π1pGqI “ X˚pZp pGqIq “ X˚pZp pGqqI Ñ HompX˚pZp pGqq
I ,Zq.
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The kernel of qG is the torsion subgroup of X˚pZp pGqqI . If π1pGqI is is induced, i.e. has a Z-basis
permuted by I, qG is an isomorphism.

We take H0pΓ,´q on both sides of κ̃G and obtain a homomorphism

λG : GpF q Ñ X˚pZp pGqIqxσy.

For x P πpGqI , we denote the image under the natural quotient map πpGqI Ñ πpGqΓ by x, then
κ̃G induces a map of sets

(4.6) κG : BpGq Ñ X˚pZp pGqΓq “ π1pGqΓ : κGprbsq “ κ̃Gpbq

where b is any representative of rbs.

Definition 4.6. (Kottwitz map) Define the Kottwitz map κG : BpGq Ñ π1pGqΓ as above.

Let D :“ lim
ÐÝE

ResE{F Gm be the pro-algebraic torus defined over F with character Q. It has
character group Q, and there is a canonical projection DÑ Gm dual to the inclusion of characters
ZÑ Q (cf. [DOR] p115 Examples 4.2.1). We put

(4.7) N pGq :“ pIntGpLqzHomLpD, Gqq
xσy

where quotient of IntGpLq means modulo equivalent relation defined by conjugacy action Intpgq :“
gp¨qg´1 for g P GpLq. If T is a maximal torus of G with Weyl group W , then

(4.8) N pGq “ pX˚pT qQ{W qΓ

where X˚pT qQ “ X˚pT qbQ. The proof follows from [Kot1] and the fact that N pT q “ X˚pT q
ΓbQ.

Definition-Proposition 4.7. (Newton map) The group Qˆ acts on the character group Q of
D, thus it acts on D. Let b P GpLq, then there exists a unique element ν P HomLpD, Gq for which
there exist an integer s ą 0, an element c P GpLq and a uniformizing element $ of F such that:

(i) sν P HomLpGm, Gq, where sν denotes the composite D s
ÝÑ D

ν
ÝÑ G;

(ii) Intpcq ˝ ν is defined over the fixed field of σs in L;
(iii) c ¨ b ¨ σpbq ¨ . . . ¨ σspbq ¨ σspcq´1 “ c ¨ psνqp$q ¨ c´1.
The element ν is called the slope homomorphism associated to b.

Furthermore, the map b ÞÑ ν that we may also denote by νb or νG,b has the following properties:
(a) νσpbq “ σpνq.
(b) gbσpgq´1 ÞÑ Intpgq ˝ ν, @g P GpLq.
(c) νb “ Intpbq ˝ σpνbq.
(d) νb is trivial if and only if b is in the image of the map H1pF,Gq Ñ BpGq (cf. [Kot2] eq.1.8.3).

By taking conjugacy classes: νGprbsq :“ νG,rbs “ νb, for any b P rbs, we call the map νGprbsq the
Newton map of the group G.

This definition-proposition is subtracted from [Kot2] §4.

Remark 2. (1) (b) shows that the Newton map is well-defined, independent of choice of b P rbs. (c)
shows that the image ν is defined over F if, for example, when G is quasi-split.

(2) The morphism νb defines a Q-grading on the vector space V bF L for any F -rational represen-
tation of G. The morphism νb is characterized by the property that this grading is the slope
decomposition of the isocrystal associated to pb, V q. The slope λ of V that appear in the slope
decomposition is independent of the choice of b in rbs.
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(3) Note that both κG and νG are functorial in G, νp´q : Bp´q Ñ N p´q and κp´q : Bp´q Ñ π1p´qΓ

are natural transformations of functors from the category of connected reductive algebraic
groups to the category of finitely generated discrete Γ-modules.

(4) νGpbq and κGpbq have the same image in π1pGq bQ. cf. [Kot4] §6.

Proposition 4.8. For G “ GLpV q, where V is a h-dimensional vector space over F , then the set
BpGq classifies the σ-L-spaces of height h, i.e. there is a bijection

BpGq
„
ÝÑ tF -isocrystalsu

Proof. For b P GpLq, we associate to it an σ-L-space

pVL, ϕq :“ pV bF L, b ¨ pidV bσqq.

There exist uniquely determined rational numbers

λ1 ă λ2 ă ¨ ¨ ¨ ă λr

and a uniquely determined decomposition

VL “
r
à

i“1

Vi.

into the ϕ-stable subspaces for which there exist OL-lattices Mi Ă Vi such that

ϕhiMi “ $di
LMi, hi “ dimL Vi

where di “ λi ¨hi P Z. The subspace Vi is called the isotypical component of slope λi. The associated
νb is equal to

νb “
r
à

i“1

λi ¨ idVi

Here λi ¨ idVi denotes the composition

D
λi
ÝÑ Gm Ă GLpV q

In this case the map νG : BpGq Ñ N pGq is injective, following from Dieudonné-Manin classification
of σ-L-spaces, [Kot2] §3. �

Definition 4.9. Associate to b P GpLq there is a functor

JbpRq :“ tg P GpRbF Lq | b “ gbσpgq´1u.

Let Jb be an algebraic group that represents this functor, it is called the σ-centralizer group.

The fact that functor Jb is representable by a smooth affine group scheme is proved in [RZ]
Proposition 1.12.. Note that Jb “ Jgbσpgq´1 for any g P GpLq.

Definition 4.10. A class rbs P BpGq is called basic, if the conjugacy class νGprbsq consists of central
morphisms, i.e. its image is in ZpGq. Denote the set of basic classes by BpGqbasic.

The conjugacy class rbs is basic is equivalent to Jb is an inner form of G ([Kot2] §5).

Proposition 4.11. The map

κG ˆ νG : BpGq Ñ π1pGq ˆ pX˚pGqQ{W q
Γ

is injective.

This proposition is proved in [Kot4] §4.13.
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4.3. Rapoport-Zink spaces. Before we introduce local Shimura varieties, we first have a look at
Rapoport-Zink spaces because we know more about them and they serve as important examples
of local Shimura varieties. This part together with local Shimura varieties should be thought as
some general machine, so they look abstract. Later in Example parts 5, we will see hints to various
conditions of this section.

Definition 4.12. A simple rational RZ datum in EL case is a tupleD of the formD “ pF,B, V, tµu , rbsq,
where
(1) F is a finite field extension of Qp,
(2) B is a central division algebra over F ,
(3) V is a finite dimensional B-module,
(4) tµu is a conjugacy class of minuscule cocharacters µ : Gm,Qp Ñ GQp , i.e. xµ, αy “ ˘1 or 0 for

all α P ΦpG,B, T q,
(5) rbs P ApG, tµuq, where G :“ GLBpV q is an algebraic group over Qp.
And the following additional condition is satisfied: For µ P tµu consider the decomposition of V bQp
into weight spaces, the only weights occur are 0 and 1.

A simple integral RZ datum DZp in the EL case consists, in addition to data D, of a maximal
order OB in B and an OB-stable lattice Λ in V . This induces an integral model G of G over Zp,
namely G “ GLOB pΛq as a group scheme over Zp.

Definition 4.13. For this case, we consider p ‰ 2. A simple rational RZ datum in the PEL case
is a tuple D “ pF,B, V, p , q, ˚, tµu , rbsq where
(1) F , B and V are as in EL case,
(2) p , q is a nondegenerate alternating Qp-bilinear form on V ,
(3) ˚ is an involution on B satisfying

pxv,wq “ pv, x˚wq, for all v, w P V, and all x P B,

(4) tµu is a conjugacy class of minuscule cocharacters µ : Gm,Qp Ñ GQp , where G is the algebraic
group over Qp defined by

(4.9)
GpRq “ tg P GLBbQpR

pV bQp Rq | there is

cpgq P Rˆ such that pgv1, gv2q “ cpgqpv1, v2q, for all v1, v2 P V bQp Ru,

(5) rbs P ApG, tµuq.
And the following additional condition is satisfied:
(a) For µ P tµu consider the decomposition of V b Qp into weight spaces, the only weights occur

are 0 and 1.
(b) We require for any µ P tµu, the composition

Gm,Qp
µ
ÝÑ GQp

c
ÝÑ Gm,Qp

is the identity. The later morphism denotes the multiplier c : GÑ Gm.
A simple integral RZ datum DZp in the PEL case consists in addition to data D, of a maximal

order OB in B that is stable under involution ˚, and an OB-stable lattice Λ in V such that $Λ Ă
Λ_ Ă Λ. Here $ denotes the uniformizer in OB , and Λ_ denotes the dual integral lattices with
respect to p , q. This induces an integral model G of G over Zp with GpZpq “ GpQpq

Ş

GLOB pΛq.
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In the rest of this part, We will abbreviate J for Jb, and by writing b, we always mean a
representative b in a fixed rbs. Let E be the definition field of tµu and O be the ring of integers of
OĔ , let OE denote the ring of integers of E.

Let N ilpO denote the category of O-schemes S on which p is locally nilpotent. For S P N ilpO
we denote by S the closed subscheme defined by pOS .

Definition 4.14. An abelian fppf sheaf G(see [Vistoli] §2.3) is said to be a p-divisible group if the
following conditions are satisfied:

(i) G ˆp
ÝÝÑ G is surjective.

(ii) Grpms :“ KerpG
ˆpm

ÝÝÝÑ Gq is represented by a finite locally free group scheme over S.
(iii) G “ lim

ÝÑm
Grpms.

A morphism f : G1 Ñ G of p-divisible group is called an isogeny if its kernel is a finite group scheme.
A quasi-isogeny between p-divisible groups is an isogeny multiplied by $´n for some n P N.

Let FĔ be the residue field of O, and denote it by F1 for brevity. We fix a pair pX, ρXq as framing
object.

Definition 4.15. We define pairs pX, ρq where X is a p-divisible group over S P N ilpO and
ρ : OB Ñ EndpXq is an action of OB on X. We require the Kottwitz condition associated to tµu,
i.e. the equality of characteristic polynomials

(4.10) charpρpbq|LieX , T q “ charpb|V0
, T q, @b P OB

where V0 is the weight 0 subspace under weight space decomposition associated to any µ P tµu.
We require the rational Dieudonné module (cf. [Wei] Lecture 1) of X with its action by B and its
Frobenius endomorphism is isomorphic to pV bF L, b ¨ pidbσqq with b P rbs fixed.

Then we consider the set-valued functor

(4.11)
MDZp

: N ilpO Ñ pSetsq

S ÞÑ tpX, ρ, ιqu { –

where

(4.12)
!

pX, ρ, ιq | pX, ρq is as above, with a OB-linear quasi-isogeny ι : X ˆS S Ñ XˆSpec F1 S
)

We can similarly define such functor for PEL case, see [RV] §4.6.

Theorem 4.16. Let DZp be integral RZ data of type EL or PEL. The functor MDZp
on N ilpO is

representable by a formal scheme, locally formally of finite type and separated over Spf O.

Proof. [RZ] Theorem 2.16. �

Fix a simple integral RZ datum, let M “MDZp
be the corresponding formal scheme over Spf O

and pass to its generic fibers using [Hub] §4: M :“M rig. Let T be the local system over M defined
by the p-adic Tate module of the universal p-divisible group on M , together with the OB action
and polarization pairing (in the PEL case). Set V “ T b Qp. Let K Ă GpZpq be a subgroup of
finite index, we associate to K the rigid space MK “MK

DZp
classifying K-level structure of V

(4.13) T – Λ modK

see [Far1] Definition 2.3.17. Then MK is a finite étale covering of M rig
DZp

and for K0 “ GpZpq, we
define MK0 :“M rig

DZp
.
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There is a smooth projective variety F “ FpG, tµuq over E where E is the definition field of µ,
whose points over F correspond to the par-equivalence classes of elements in tµu. The variety F is
homogeneous under GE , and is a generalized flag variety for GE .

Set
F̆ rig :“ F̆pG, tµuqrig “ pF ˆSpecE Spec Ĕqrig.

Definition 4.17. We call a pair pb, µq consisting of an element b P GpLq and a cocharacter µ
of G defined over a finite extension K of L a weakly admissible pair in G if for any F -rational
representation V of G, the filtered σ-F -space IpV q “ pV bF L, bσ,F‚µq is weakly admissible.

Definition 4.18. The set of elements µ P F̆pF q such that pb, µq is a weakly admissible pair for G
forms an admissible open subset of F̆ rig, called the nonarchimedean period domain associated with
pG, b, tµuq and denoted by Fwa “ F̆ rigpG, b, tµuqwa, cf. [RZ] Definition 1.35.

Let pXuniv, ιunivq be the universal p-divisible group over M, with additional structure and
equipped with the universal quasi-isogeny. Then ι induces an isomorphism

V bQp OM
„
ÝÑMpXunivq bOM OM

where MpXunivq denotes the Lie algebra of the universal vector extension of Xuniv and V the
rational Tate module of X. The surjection MpXq Ñ LieX thus yields a filtration on V bQp OM

which corresponds to a morphism π̆ : MÑ F̆ rig which factors through Fwa. The period morphism
extends to a compatible system of morphisms

(4.14) π̆K : MK
D Ñ F̆ rig,

which factors through Fwa and but not compatible with Weil descent data, see [RZ] Definition 3.45.
Therefore we need to modify this by introducing another map in the next subsection.

4.4. Local Shimura varieties and their cohomology. In this section, we assume that G is
quasi-split and split over an unramified extension E of F . We assume from now on that νb is
chosen (in a unique way) so that it represents νGprbsq P pX˚pT qQqΓdom. On X˚pT qQ we consider
the order ď given by v ď v1 if and only if v1 ´ v is a nonnegative Q-linear combination of positive
relative coroots. Let pX˚pT qQqdom denote the set of cocharacters of T which are dominant with
respect to B.

For any conjugacy class of tµu of X˚pT q, denote by µdom the unique element of tµu in X˚pT qdom.
For any dominant element µ P X˚pT q, let Γµ be the stabilizer of µ P Γ, it has finite index as

X˚pT q is a discrete Γ-module. Define µ:

µ “ rΓ : Γµs
´1

ÿ

τPΓ{Γµ

τpµq P pX˚pT qQq
Γ
dom

We know from the definition of action (4.3) that τ action preserves the set of roots Φ and the
resulting µ is just “taking the average”, thus µ is in pX˚pT qQqΓdom.

Let b P GpF q and µ P X˚pT q be such that b P Kµp$F qK (by Cartan decomposition) for some
hyperspecial subgroup K of GpF q that fixes a vertex in the apartment for T pLq. Then κGpbq is the
image of µ under the canonical projection appearing in definition 4.5 X˚pT q� π1pGqΓ. We define
µ7 as the image of µ under this canonical projection.

Definition 4.19. If tµu is a conjugacy class of cocharacters over F , an element rbs P BpGq is called
acceptable with respect to tµu if νGprbsq ď µdom. Denote by ApG, tµuq the subset of acceptable
elements of BpGq.
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Definition 4.20. A class rbs P ApG, tµuq, rbs is called neutral if κGprbsq “ µ7, denote by BpG, tµuq
the set of acceptable neutral conjugacy classes.

Remark 3. There is an interpretation of the above conditions in terms of the Hodge polygon and
the Newton polygon when G “ GLn: µ is called the generalized Hodge polygon.
κGpbq “ µ7 ô The Hodge polygon and the Newton polygon have the same endpoints.
νGprbsq ď µô The Hodge polygon lies above the Newton polygon.
BpG, tµuq and ApG, tµuq can be defined more generally when G is no longer assumed to be

quasi-split ([Kot4], 6.2). They are nonempty finite sets.

Definition 4.21. A local Shimura datum over F is a triple pG, rbs, tµuq consisting of the following
data:
(a) G is a reductive group over F ;
(b) rbs P BpGq is a σ-conjugacy class;
(c) tµu is a geometric conjugacy class of cocharacters, i.e. µ : Gm,F Ñ GF .
such that:
(1) tµu is minuscule,
(2) rbs P BpG, tµuq.

To a local Shimura datum is associated:
(1) the reflex field E “ EpG, tµuq which is the definition field of µ inside F ;
(2) the algebraic group Jb.

The (conjectural) existence of Local Shimura Varieties We conjecture that for a given
local Shimura datum pG, rbs, tµuq over F , there exists a tower of rigid-analytic spaces

 

MK
(

K
over

Sp Ĕ, where K ranges over all open compact subgroups of GpF q, with the following properties:
(i) each MK is equipped with an action of JpF q.
(ii) the group GpF q operates on the tower as a group of Hecke correspondences, for definition see

[RZ] Definition 4.57.
(iii) the tower is equipped with a Weil descent datum down to E,
(iv) there exists a compatible system of étale and partially proper period morphism(s) π̆K : MK Ñ

F̆pG, b, tµuqwa that is equivariant for the action of JpF q and which is the first component of
a JpF q ˆGpF q-equivariant morphism of towers of rigid-analytic spaces

pπ̆K , κKq : MK Ñ FpG, b, tµuqwa ˆ∆

compatible with the Weil descent data. Here ∆ is the dual abelian group of X˚pGabqΓ, π̆K is
defined in (4.14) and κK : MK Ñ ∆ is defined in [RZ] 3.52.

Now we can define the `-adic cohomology of MK with compact support (recall that ` is a prime
such that ` ‰ p), for each i P N:

Hi
cpMKq :“ Hi

cpMK ˆĔ
pE,Q`q :“

˜˜

lim
ÐÝ
r

Hi
cpMK bĔ

pE,Z{`rZq

¸

bZ` Q`q

¸

bQ` Q`

It is equipped with a smooth action of JpF q and a continuous action of the inertia group IE “

GalppE{Ĕq by functoriality. Due to the Weil descent datum from Ĕ to E, the action of IE can be
extended to an action of WE . Then Hi

cpMKq is a finitely generated JpF q-module, proved in [Far1]
Proposition 4.4.13.
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For every admissible representation ρ of JpF q, and every compact open subgroup K, indexes i,
j P N, we can define the Q`-vector space:

Hi,jpMKqrρs “ ExtjJpF qpH
i
cpMKq, ρq

which is finite dimensional over Q` and vanishes for j ą rksspJq, i.e. the semisimple rank of J .
Further, we define:

Hi,jppG, rbs, tµuqqrρs :“ lim
ÝÑ
K

ExtjJpF qpH
i
cpMKq, ρq.

This is an admissible GpF q-module and a continuous WE-module, and it vanishes for almost all
i, j P N.

We denote by GrothpGpF q ˆ WEq the Grothendieck group of the category of pGpF q ˆ WEq-
modules over Q` that are admissible as GpF q-module and continuous as WE-modules. We define
the alternating sum in GrothpGpF q ˆWEq, modified by a Galois twist, let d “ dimM:

(4.15) H‚ppG, rbs, tµuqqrρs “
ÿ

i,jě0

p´1qi`jHi,jppG, rbs, tµuqqrρsp´dq

4.5. Summary of local Langlands correspondence. Let us introduce some notations from
local Langlands correspondence: Let W 1

F be the Weil-Deligne group of F , for our concerned case
that F is nonarchimedean, is WF ˆ SL2pCq. We denote by LG the L-group of G, and pG :“ pLGq0.
We consider the tempered irreducible admissible representations of GpF q, defined in [Bor] §10,
whose set of equivalence classes is denoted by ΠpGq. We denote by ΦpGq the set of (tempered)
admissible L-homomorphisms ϕ : W 1

F Ñ
LG modulo equivalence up to Intp pGq action, and elements

of ΦpGq are call L-parameters or Langlands parameters, see [Bor] §8.2. For ϕ P ΦpGq, we consider
Sϕ :“ Cent

pGpϕq the centralizer of image of ϕ in pG. ϕ is called a discrete L-parameter if the image
of ϕ is not contained in any proper Levi subgroup of LG, which is equivariant to S0

ϕ Ă Zp pGqΓ.
The local Langlands conjecture for reductive groups ([Kal] §1.1 Conjecture A) tells us: there is a
natural surjection LLC : ΠpGq Ñ ΦpGq with finite fibers, or called L-packet, denoted by ΠϕpGq for
each ϕ P ΦpGq. ϕ is called elliptic if the restriction of ϕ to SL2pCq is trivial. We require all ϕ for
our discussion to be elliptic.

When G “ GLn, it means that ϕ corresponds to a supercuspidal representation under local
Langlands correspondence [Ren].

4.6. The statement of Kottwitz Conjecture. We set λb “ κGprbsq, λb˚ “ κGprb
˚sq. In order

to state the Kottwitz Conjecture, we make the following assumptions throughout this section.

Assumption 4.22. :

(1) b is basic, i.e. J is an inner form of G.
(2) G is a B-inner twist of the quasi-split form G˚ of G, i.e., there exists b˚ P G˚pLq such that G

is isomorphic to Jb˚ of G˚.

Remark 4. (i) The assumption (2) is satisfied if G has connected center.
(ii) If G is quasi-split, and λb˚ “ 0.
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Recall that π1pGqΓ “ X˚pZp pGqΓq. From Kaletha’s refined local Langlands correspondence [Kal]
§1.4, there are identifications of L-packets for G and Jb:

(4.16)

ΠϕpGq
„
ÝÑ tirreducible algebraic representations τ of Sϕ | τ |Zp pGqΓ “ λb˚u

π ÞÑ τπ

ΠϕpJq
„
ÝÑ tirreducible algebraic representations τ of Sϕ | τ |Zp pGqΓ “ λb˚ ` λbu

ρ ÞÑ τρ

Definition-Proposition 4.23. For any µ P X˚pGq, there exists a representation rtµu of LG, unique
up to isomorphism, satisfying the following two properties:
(a) As a pG representation, rtµu is irreducible with highest weight µ.
(b) Let y be a choice of splitting of pG and assume that it is fixed by Γ, then the subgroup WF of

LG acts trivially on the highest weight space of rtµu corresponding to y.

For the proof, see [Kot1] lemma 2.1.2. The identification X˚pZpGqq “ X˚p pGq says that we can
associate to µ a character of pG, the irreducible representation generated by µ under Intp pGq action
is what we need. By (4.7) and (4.8), µ determines an orbit of the Weyl group of p pG, pT q acting on
X˚p pT q, thus it makes sense to say rtµu is an irreducible representation.

CONJECTURE 4.1. (Kottwitz Conjecture). Under the assumptions on pG, b, tµuq above, let
ϕ be a discrete Langlands parameter for G. Denote by ϕE the restriction of ϕ to WE . Recall that
rtµu is the representation of LG defined by tµu, τ_π is the contragredient representation of τπ. See
rtµu ˝ ϕE as a representation of Sφ ˆWE via

prtµu ˝ ϕEqps, wq “ rtµups ¨ ϕEpwqq.

Then, for ρ P ΠϕpJq, we have an equality in GrothpGpF q ˆWEq:

H‚ppG, rbs, tµuqqrρs “ p´1qd
ÿ

πPΠϕpGq

π b HomSϕpτ̆π b τρ, rµ ˝ ϕEqp´
d

2
q

where d “ dimM.

Remark 5. M.Harris and R.Taylor have proved the GLn case with µ “ p1, 0, . . . , 0q [HT], S.W.Shin
has proved it for ResF {QppGLnq, F {Qp unramified case, [Shi]. M.Strauch considers the weakened
version by ignoring the WE action, in the Lubin-Tate case for an arbitrary F {Qp [Str2].

Remark 6. (i) If ϕ is a discrete character Langlands parameter, ExtiJpF qpH
i
cpMK1q, ρq “ 0, j ą 0,

[Ren] VI 3.6. proposition.
(ii) In many cases, studied in [Dat1], we have HomJpF qpH

i
cpMKq, ρq “ 0, i ‰ d.
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5. Examples

5.1. Kottwitz conjecture for torus. Assume that G “ T is a torus over F , for any µ : Gm Ñ T ,
the conjugacy class tµu consists of only one element as T is commutative. BpG, tµuq consists
of a single element, ApT, tµuq “ pX˚pT qΓqtor, Jb “ T since T is commutative. We note that
π1pT q “ X˚pT q, the Kottwitz map is explicitly constructed in [Kot4] §7, λb determines νb as is
shown in [RV] Example 2.2. rtµu is just µ and νb “ µ. We have MpT, rbs, µqK “ T pF q{K. All τ , π
appearing in (4.1) are just characters. The cocharacter µ defines a homomorphism of tori:

Nµ : ResE{F Gm
ResE{F µ
ÝÝÝÝÝÝÑ TE

NE{F
ÝÝÝÑ T

where NE{F denotes the norm map. Let

ArtE : Eˆ Ñ GalpE{Eqab

be the Artin map normalized by$ ÞÑ Frob in GalpE{Eq, where Frob means the arithmetic Frobenius
morphism in GalpE{Eq. Let χµ : IE Ñ T pF q be the following composition map:

(5.1)
IE Ñ OˆE

Nµ
ÝÝÑ T pF q

γ ÞÑ NµpArt´1
pγ|Eabqq

The action of IE on T pF q{K is given by

@x P T pF q, γpxKq “ χµpγqxK

For varying K, these T pF q{K form a tower of rigid-analytic spaces over SppĔq, the action of
JpF q ˆ T pF q on K is by pa, bqxK “ abxK, this action maps each element of the tower to itself.

The simplifications in the remarks 6 hold and note that d “ 0. We recall that the action of
J ˆW is smooth, thus

lim
ÝÑ
K

H0
c pMKq “ lim

ÝÑ
K

H0
c ppT pF q{Kq ˆSp Ĕ Sp pE, ,Q`q “ lim

ÝÑ
K

C8c pT pF q{Kq “ C8c pT pF qq

Since T is compact, by Peter-Weyl theorem [Sep] Theorem 3.24, C8c pT pF qq “ C8pT pF qq “
À

τP pT pF q τ b τ̆ . Hence on the left hand side of (4.1) becomes:

H‚ppT, rbs, tµuqqrρs “ HomT pF qpC
8pT pF qq, ρq “ HomT pF qp

à

τP pT pF q

τ b τ̆ , ρq “ ρ

We have Sϕ “ pT and:

ΠϕpT q
„
ÝÑ tτ characters of pT | τ |

pTΓ “ 0u

ΠϕpJq
„
ÝÑ tτ characters of pT | τ |

pTΓ “ λbu

In the torus case, the right hand side of (4.1):

Hom
pT pτρ, rµ ˝ ϕEq “ Hom

pT pρ, µq “ ρ
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5.2. Lubin-Tate formal group laws. Recall from local Langlands correspondence for GL1pF q,
we have Fˆ „

ÝÝÝÑ
ArtF

W ab
F . Lubin-Tate theory understands ArtF by 1-dimensional OF -module.

We will write objects after reduction, i.e. base change to residue field, in math bold type, for
example XF :“ X bOF pOF {$OF q where X is defined over OF .

Definition 5.1. A one-dimensional commutative formal group law X over a commutative ring A
is a power series Xp¨, ¨q P ArrS, T ss satisfying the properties:

(1) XpS, T q “ S ` T` higher terms;
(2) XpS, T q “ XpT, Sq;
(3) XppS, T q, Uq “ XpS,XpT,Uqq;
(4) There is a gpT q P ArrT ss with XpT, gpT qq “ 0.

Definition 5.2. A 1-dimensional formal OF -module law over a commutative ring A is a formal
group law X over A together with a family of power series rasX for a P OF that represent a
homomorphism OF Ñ EndApXq such that rasXpT q “ aT` higher terms.

If we consider A “ F, the residue field of maximal unramified extension F un, then the homomor-
phism OF Ñ EndFpXq is just the reduction map OF Ñ OF {$FOF “ F Ă F.

Let fpT q P OF̆ rrT ss be any power series satisfying:

(1) fpT q “ $T` higher terms,
(2) fpT q ” T qpmod$q.

Theorem 5.3. There exists a unique 1-dimensional formal OF -module law Xf over OF̆ for which
r$sXf pT q “ fpT q and of height 1, i.e. r$sXpT q – T q mod$. Furthermore, if g is another power
series satisfying the two criteria above, then Xf and Xg are isomorphic.

Proof. See [Mil2] Corollary 2.16. �

We define the following objects:
Xr$mspOF̆ q :“ tx P OF̆ , r$

msXpxq “ 0u, abbreviated as Xr$ms. Using some facts from
commutative algebra, we can prove that Xr$ms is a free OF {$

mOF -module of rank 1. T$pXq :“

lim
ÐÝm

Xr$ms, F̆m :“ F̆ pXr$msq, F̆8 :“
Ť

m F̆m.
GalpF̆m{F̆ q action onXr$ms – OF {$

mOF naturally thus it induces an isomorphism: GalpF̆m{F̆ q
„
ÝÝÑ
γm

pOF {$
mOF q

ˆ. Pass to inverse limit,

lim
ÐÝ
m

γm : GalpF̆8{F̆ q
„
ÝÑ OˆF .

From local class field theory, and the identification GalpF̆8{F̆ q – GalpF ab{Funq “ IabF where IabF
denotes the abelianized inertia group, we deduce lim

ÐÝ
γm “ Art´1

F |IabF
.

5.3. Kottwitz conjecture for GL1. In the subsection above, let h “ 1, M constructed there has
dimension 0. The p-divisible group X0 is just the multiplicative group, and since any lift of X0 is also
the multiplicative group, as is shown in Theorem 5.3. Therefore M is the discrete sets with level
structure α : F

„
ÝÑ lim

ÐÝn
µqnpF q bOF F – F , where µqnpF q :“

 

x P F | xq
n

“ 1
(

. G “ J “ Fˆ,
WF acts through the Artin map.
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5.4. Lubin-Tate tower. Let X0 be a formal OF -module with height h, denoted as htpX0q “ h
over F, which means that the kernel of multiplication by $F is a finite group scheme of rank qh
over F. Let C be the category of complete noetherian local OF̆ -algebra with residue field F.

Definition 5.4. For A P C, deformations of X0 over A are pairs pX, ιq such that X is a 1-
dimensional formal OF -module over A, with an isomorphism ι : X0

„
ÝÑ XF “ X bA F.

Definition 5.5. For A P C with maximal ideal mA, we define a structure of level m on a deformation
pX, ιq PM0pAq as an A-module homomorphism

α : pOF {$
mOF q

h Ñ Xr$mspAq Ă mA

such that r$sXpT q is divisible by
ź

aPpOF {$mOF qh
pT ´ αpaqq

where Xr$mspAq :“ tx P A, r$msXpxq “ 0u.

For each m ě 1, let Um “ 1`$m
F pMathˆhpOF qq, which is called the m-th principal congruence

subgroup inside U0 :“ GLhpOF q.

Definition-Proposition 5.6. Define the set-valued functor M0
Um

on the category C

(5.2)
C Ñ pSetsq

A ÞÑ tpX, ι, αq, | pX, ιq is a deformation of X0 over A,α is a structure of level mu { –

where pX, ι, αq – pX 1, ι1, α1q if and only if there is an isomorphism pX, ιq Ñ pX 1, ι1q of formal
OF -modules over A that is compatible with level structures, denoting such equivariant classes by
rX, ι, αs. Then M p0q

Um
is represented by a Rp0qm P C which is finite flat over OF̆ rrT1, . . . , Th´1ss and

R
p0q
0 – OF̆ rrT1, . . . , Th´1ss (non-canonically).

Proof. [Dri] Proposition 4.3. �

Remark 7. There is a universal formal group Xuniv over Auniv :“ OF̆ rrT1, . . . , Th´1ss, together with
an isomorphism ιuniv : X0

„
ÝÑ X bAuniv F. Whenever A belongs to C and pX, ιq is a pair as above,

there are unique elements (the maximal ideal of A) such that pX, ιq is the pull-back of pXuniv, ιunivq

along the continuous map OF̆ rrT1, . . . , Th´1ss Ñ A sending Ti to xi.

Let X be a formal OF -module over A P C, X is called to be of height h if XF has height h. For
any isogeny ι0 P HomOF pX0, XFq, its height htpι0q is the number h such that rank of Kerpι0q over F
is qh. For any quasi-isogeny ι P HomOF pX0, XFqbOF F , we define its height by htpιq “ htp$rq´hr,
where r is chosen such that $rι P HomOF pX0, XFq.

Definition 5.7. Define the functor M pkq
Um

for k P Z from C to category of sets:

(5.3)

$

’

&

’

%

pX, ι, αq,

˛X is a formal OF -module of height h over A,
˛A quasi-isogeny of height k, ι : X0 Ñ XF,

˛A level m-structure α

,

/

.

/

-

{ –

By the uniqueness of X0 up to isomorphism, we have M p0q
Um

– M
pkq
Um

, but the isomorphism is
not canonical. Therefore M pkq

Um
is also representable by a local OF̆ -algebra, denoted by Rpkqm which

for varying k, m fixed, are all isomorphic. We set MUm “
š

kPZM
pkq
Um

. Consider on Rpkqm the adic
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topology given by its maximal ideal m
R
pkq
m

, we define the formal spectrum SpfpR
pkq
m q, also denoted

by M pkq
Um

, and denote their union by MUm “
š

kPZ SpfpR
pkq
m q.

Now we define group actions on MUm . Let rX, ι, αs be any element of MUmpAq.
Denote by J orDˆ the group of self quasi-isogenies of X0. Let OD :“ EndOF pX0q be the maximal

order of central division algebra D with invariant 1{h over F . We define that d P Dˆ acts on the
right by rX, ι, αs.d “ rX, ι ˝ d, αs. If rX, ι, αs PM pkq

Um
pAq, then rX, ι, αs.d PM pk`vpNrdpbqqq

Um
pAq, where

Nrd : J Ñ F denotes the reduced norm.
Next, we define the action of the group GLhpF q on the tower tMUmumPZ. Let g P MathˆhpOF q,

for integers m ě m1 ě 0 such that
gOn

F Ă $´pm´m
1
qOn

F

we define a right action gm,m1 : MUmpAq ÑMUm1 pAq by rX, ι, αs.g. By our assumption on g, we get
gOh

F Ą Oh
F , and gOh

F {Oh
F can be viewed as a subgroup of pOF {$

´mOF q
h. A formal OF -module

X 1 over A is defined by taking the quotient of X by the finite subgroup αpgOh
F {Oh

F q denoted by
X 1 “ X{αpgOh

F {Oh
F q. Moreover, left multiplication by g induces an injection:

$´m
1

Oh
F {Oh

F
g
ÝÑ $´mOh

F {gOh
F

and the composition with the map induced from level structure

p$´mOh
F {Oh

F q{pgOh
F {Oh

F q Ñ X{αpgOh
F {Oh

F q “ X 1

together gives a level m1-structure

α1 : $´m
1

Oh
F {Oh

F Ñ X 1r$m1spAq

Finally, define ι1 to be the composition of ι with XF Ñ pX 1qF. If element rX, ι, αs is in M pkq
Um
pAq,

then rX, ι, αs.g is in M pk´vpdet gqq
Um1

pAq.
Now we define the action of a general g P GLhpF q. We choose r P Z such that p$´rgq´1 P

MathˆhpOF q. Then m ě m1 ě 0 with

$´rgOn
F Ă $´pm´m

1
qOn

F

and for rX, ι, αs PMUmpAq define rX 1, ι1, α1s “ rX, ι, αs.p$´rgq as above and put

rX, ι, αs.g “ rX 1, ι1 ˝$´r, α1s

This construction gives natural transformation

(5.4) g : MUm ÑMUm1

We can check that it is independent of r or $. In particular, for each m there is an action of U0 on
MUm which commutes with action of Dˆ.

5.5. Rigid fibers. We follow [Hub] §4 and define an adic space tpM pkq
Um
q associated to M pkq

Um
(and

to MUm). The set of points of the underlying topological space consists of all (equivalence classes
of) continuous valuations | ¨ |v on R

pkq
m such that |f |v ď 1 for all f P Rpkqm . The set of valuations

| ¨ |v with |$|v “ 0 is a closed subset which we denote by V p$q. The open complement inherits the
structure of an adic space and we put

Mpkq
Um
“ tpM

pkq
Um
q ´ V p$q, and MUm “

ž

kPZ
Mpkq

Um
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For m ě m1, there are canonical maps given by restriction of level structures

MUm ÑMU 1m

which are étale and Galois with Galois group Um1{Um – GLhpOF {$
mq.

For an open subgroup U Ă U0, we choose m larger enough such that Um Ă U . Since the action
of U{Um on MUm respects the components Mpkq

Um
, we define

MU “MUm{pU{Umq

For any g P GLhpF q and an open subgroup U Ă U0 such that g´1Ug Ă U0 there is a morphism
of analytic spaces

(5.5) MU ÑMg´1Ug

All the spaces MU also come with an induced action of J which commutes with the morphisms
induced by elements g P GLhpF q.

We can give a description of what will happen when passing to limit, following [Wei] Lecture 2:
If we fix m1 “ 0, we have a tower of rigid spaces tMUmumě0, MUm ÑMU0 is an étale covering

of the rigid disk with Galois group GLhpOF {$
mq. We would like to produce a space M which is

the inverse limit of the MUm . Such a space doesn’t exist in the category of rigid spaces, so we shall
have to content ourselves with the following definition on the level of points. Let K 1 Ą W pFq be a
field admitting a valuation extending from W pFq, then MpK 1q is the set of triples pX, ι, αq where
(i) X is a formal group over OK1 ,
(ii) A quasi-isogeny ι : X0 bF OK1{$K1OK1 Ñ X bOK1 OK1{$K1OK1 ,
(iii) An isomorphism of K 1-vector spaces α : lim

ÐÝm
pOK1{$

m
K1OK1q

hbOK1 K
1 „ÝÑ lim

ÐÝm
Xr$m

K1sbOK1
K 1

two points pX, ι, αq, pX 1, ι1, α1q determine the same point of M if there is an isogeny X Ñ X 1

translating one set of structure to the other.
We can define three group actions on tMUmumě0.

Denote by J or Dˆ as before. The element d P Dˆ acts on M on the right by pX, ι, αq d
ÞÝÑ

pX, ι ˝ d, αq.
Let G “ GLhpF q, then each element g P G sends pX, ι, αq to pX, ι, α ˝ gq.
There is also a Weil group WF action on M. Let w P WF that induces Frobnq , n P Z action on

F{F, where Frobq : x ÞÑ xq. Let pX, ι, αq be a Cp-point of M. Then we have the p-divisible group
wpXq by applying w coefficient-wise to a formal group law representing X. And w acts on ι gives
ιw : Xq

n

0 b OCp{pOCp Ñ wpXq b OCp{pOCp , where Xq
n

0 is X0 with coefficients translated after n
times Frobenius map. There is also a canonical action on α.

5.6. `-adic cohomology groups. Now we introduce the cohomology groups, from now on, we fix
a prime number ` ‰ p, where p “ charpFq.

Lemma 5.8. For any open subgroup U Ă U0 and any j P Z, the Q`-vector spaces

(5.6) Hi
cpM

pjq
U ˆF̆

pF ,Q`q :“

˜

lim
ÐÝ
r

Hi
cpM

pjq
U ˆF̆

pF ,Z{`rZq

¸

bZ` Q`

are finite-dimensional and the induced action of OˆD on these spaces is smooth. The cohomology

groups Hi
cpM

pjq
U ˆF̆

pF ,Q`q vanish for i ă h´ 1 and i ą 2ph´ 1q.

Proof. [Str2] Lemma 2.5.1. �



SOME SPECIAL CASES OF KOTTWITZ CONJECTURE 21

Next, we set

(5.7) Hi
cpMU q “ Hi

cpMU ˆF̆
pF ,Q`q :“

à

jPZ
Hi
cpM

pjq
U ˆF̆

pF ,Q`q bQ` Q`

On each Q`-vector space, using (5.5) there is an induced U0 ˆ J action as long as g´1Ug Ă U0

Hi
cpMg´1Ugq Ñ Hi

cpMU q

These give rise to a representation of GLhpF q ˆ J on

Hi
cpMq :“ lim

ÝÑ
U

Hi
cpMU q

where limit is taken over all compact open subgroups U Ă U0.

5.7. Weak Kottwitz conjecture for GLh, h ě 2. We continue to use the notations from the
four subsections above, and give the statement of Kottwitz conjecture for GLh, h ě 2:

Theorem 5.9. Let JL denote the local Jacquet-Langlands correspondence map [HB] §13, and recall
that LLC denotes the local Langlands correspondence, ibid. §8. There exists a bijection between
irreducible supercuspidal representations ρ of GLhpF q and irreducible h-dimensional representations
ofWF having the property that for all irreducible supercuspidal representations ρ with Q`-coefficients
we have:

(5.8)
HomGpH

h´1
c pM,Q`q, ρq “ JLpρq b LLCpρq.

HomGpH
k
c pM,Q`q, ρq “ 0, k ‰ h´ 1.

as (virtual) representations of J ˆWF .

This result has been be stated in different forms by different authors, up to twist or taking
contragredient of LLCpρq. Here we give a sketch of the proof for the weak version without Weil
group action. It is origianlly given by [Str1] and [Str2].

We write G to mean GLh, Hi
c to mean Hi

cpMq for simplicity. We put

HomGpH
˚
c , ρq :“

ÿ

i

p´1qi HomGpH
i
c, ρq.

Proposition 5.10. For each i P Z, the representation HomGpH
i
c, ρq of J is a finite-dimensional

and smooth, and in the Grothendieck group of admissible representations of J , the following equality
holds:

(5.9) HomGpH
˚
c , ρq “ h ¨ p´1qh´1 JLpρq.

Here we ignore the Weil group action, thus LLCpρq is actually an h-dimensional Weil represen-
tation only appear as a multiplicity of JLpρq by h in the Grothendieck group of J .

Before going to the proof, let us do some preparations first.
By the fundamental resuit of Bushnell-Kutzko in [BK], we know that ρ is induced from a (finite-

dimensional) irreducible representation λ of some open subgroup Uρ that contains and is compact
modulo ZpGq cf. [BK], Theorem 8.4.1..

We thus write
ρ “ c-IndGUρpλq “ IndGUρpλq.

By Frobenius Reciprocity [HB] §2.4

HomGpH
˚
c , ρq “ HomKπ pH

˚
c , λq.
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Moreover, the character of ρ is a locally constant function on the set of regular elliptic elements
(i.e. whose characteristic polynomial is separable and irreducible) of G. For an element g P G, and
some character χρ of ρ, there is a formula of characters (see [He])

(5.10) χρpgq “
ÿ

g1PG{Uρ, pg1q´1gg1PUρ

χλppg
1q´1gg1q

For regular elliptic g the number of g1 such that pg1q´1gg1 P Uρ is finite.
For ρ as above, the representation π “ JLpρq is characterized by the following identity. Let g P G

and b P J be regular elliptic elements with the same characteristic polynomial. Then the following
character relation holds

(5.11) χπpbq “ p´1qh´1 ¨ χρpgq

It is proved in [Row] Theorem 5.8.

Proof. We first prove the finiteness of HomGpH
i
c, ρq as representation of J .

The element diagp$, . . . ,$q in ZpGq acts as scalar on ρ, and we denote this scalar by ch for
c P Q`. Put ζpgq “ c´vpdetpgqq. For any v P H˚c , $ ¨ v means the action of $ on v as an element of
G. Then:

(5.12)
HomUρpH

˚
c , λq “ HomUρpH

˚
c b ζ, λb ζq

“ HomUρ

`

pH˚c b ζq{
@

v ´ c´n$ ¨ v | v P Hi
c

D

, λb ζ
˘

For b P J , ξ is a character given by ξpbq “ c´cpNrdpbqq. We can show

pH˚c b ξq{
@

v ´ c´n$ ¨ v | v P Hi
c

D

as representation of Gˆ J is isomorphic to the natural representation of Gˆ J on
˜

lim
ÝÑ
U

H˚c pMU{$
Zq

¸

b ξ

where limit is taken over all compact open subgroups U Ă U0.
The isomorphism is constructed as follows: for v P H˚c pM

pjq
U ,Q`q, v is mapped to cnk$´k ¨ v P

H˚c pM
pj0q
U ,Q`q, where j “ j0 ` nk with 0 ď j0 ă n. This is actually a G ˆ J-isomorphism, hence

we get the following identity of representations of J :

HomGpH
˚
c , ρq “ HomUρpH

˚
c pM8{$

Zq, λb ζq b ζ_

where
H˚c pM8{$

Zq :“ lim
ÝÑ
K

H˚c pMK{$
Zq “ lim

ÝÑ
U

H˚c pMU{$
Z ˆF̆

pF ,Q`q

Taken as a representation of G, H˚c pM8{$
Zq is admissible because for any U Ă U0 that is normal

in Uρ and satisfies λ|U is a multiple of trivial representations of U , the U -invariant vector subspace
is just the finite dimensional vector space H˚c pMK{$

Zq, by Lemma 5.8.
Therefore

(5.13) HomGpH
˚
c , ρq “ HomIpH

˚
c pMU{$

Zq, λb ζq b ζ_

where I “ Uρ{$
ZU is finite group. This expression of HomGpH

˚
c , ρq involves only finite-dimensional

vector spaces. �
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The next step is to compute the trace of elliptic element b P J on (5.13). We have

(5.14) trpb|HomGpH
˚
c , ρqq “

ζpbq´1

#I

ÿ

γPI

tr
`

pγ, b´1q|H˚c pMU{$
Zq
˘

¨ χλbζpγ
´1q

Now we want to use Lefschetz trace formula to replace the terms in the above sum by an expression
involving the number of fixed points and some additional terms.

Proposition 5.11. In the above setting, let FixU pγ, b
´1q be the number (with multiplicity) of fixed

points of pγ, b´1q on pMU{$
ZqppF q, and βU pγ, b´1q be the class function with respect to γ such that

(5.15)
ÿ

γPI

βU pγ, b
´1q ¨ χλbζpγ

´1q “ 0

Then there is a trace formula of the following form

tr
`

pρ, b´1q|H˚c pMU{$
Zq
˘

“ FixU pγ, b
´1q ` βU pγ, b

´1q.

We will not prove this formula. We note that the class function βU p¨, b
´1q can be written

as
ř

τ aτχτ where τ runs over the set of equivariant classes of irreducible representation of I.
Those τ with non-zero aτ are call the representations that occurs in the boundary. The preceding
formula (5.15) says “no representation that gives rise to a supercuspidal representation occurs in
the boundary”.

Therefore,

trpb|HomGpH
˚
c , ρqq “

ζpbq´1

#I

ÿ

γPI

FixU pγ, b
´1q ¨ χλbζpγ

´1q

Finally, we state the Fixed point theorem:

Theorem 5.12. Let gb be element as in (5.11), then

FixU pγ, b
´1q “ h ¨#tḡ P G{$ZU | ḡ´1gbḡ “ γ´1u

The identity ḡ´1gbḡ “ γ´1 means that for some representative g of ḡ P G{$ZU we have ḡ´1gbḡ P Uρ
and the class of ḡ´1gbḡ in I is γ´1.

Proof. See [Str1] §4. �

Now we come back to prove Theorem 5.10.

Proof. Let b P J be regular elliptic. Then the preceding discussion gives

(5.16)

tr pb|HomGpH
˚
c , ρqq “

ζpbq´1

#I

ÿ

ḡPG{$ZU, ḡ´1gbḡPI

h ¨ χλbζpḡ
´1gbḡq

“ h
ÿ

ḡPG{Uρ, ḡ´1gbḡPUρ

χλpḡ
´1gbḡq

“ h ¨ χρpgbq

“ hp´1qh´1χJLpρqpbq.

where the first equality follows from Fix point theorem, the second equality comes from ζpḡ´1gbḡq “
c´vpdetpgbqq “ c´vpdetpbqq “ ζpbq, the third equality follows from (5.10) and the last equality is by
(5.11). �
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6. Towards perfectoid spaces and the Fargues-Fontaine curve

We can prove Kottwitz conjecture for GLh with some specially chosen b and tµu either using
global methods like [HT], or only using local methods but prove weaker version like [Str1] and [Str2].
Some of the obstruction for the pure local proof lies in that the Weil group action is complicated,
and the description of infinite level of rigid fiber is lacking. In subsection 5.5, we have some trouble
to describe the rigid fiber after passing to limit—we only have a description on the level of points
for some finite field extension. This problem is solved if we use the embedding into products of
universal covers of p-divisible groups, P.Scholze and J.Weinstein show that Lubin-Tate Tower at
infinity level is perfectoid in some sense, as is done by [SW1]. We are thus led to introduce the
perfectoid space setting and the Fargues-Fontaine curve.

6.1. Adic spaces. All rings are commutative.

Definition 6.1. A Huber ring is a Hausdorff topological ring A containing an open subring A0

such that the topology on A0 coincides with the I-adic topology for some finitely generated ideal
I Ă A0. We call A0 a ring of definition, and pA, Iq a couple of definition.

We let A˝ Ă A be the subring of power-bounded elements.

Example 6.2. For A “ Qp with p-adic topology, A˝ “ Zp. We can take A0 “ Zp and I “ ppq.

Definition 6.3. Given A, a ring of integral elements is an open and integrally closed subring
A` Ă A with A` Ď A˝. A Huber ring is called a Tate ring if it contains a topologically nilpotent
unit, i.e. x P A such that limnÑ8 x

n “ 0 and we call such x a pseudo-uniformizer.

Now we declare that from now on, the letter Γ is used to denote a totally ordered abelian group,
not the absolute Galois group any more.

Definition 6.4. Given a topological ring A, a continuous valuation on A is a function | ¨ | : A Ñ
Γ
Ť

t0u satisfying:
(1) |ab| “ |a||b| and |a` b| ď maxp|a|, |b|q,
(2) |0| “ 0 and |1| “ 1,
(3) for all γ P Im | ¨ |, the subset ta P A : |a| ă γu is open in A.

We say | ¨ | and | ¨ |1 are equivalent if the condition

|a| ď |b| ô |a|1 ď |b|1 for all a, b P A

Definition 6.5. Given pA,A`q we define the adic spectrum SpapA,A`q to be the set of equivalence
classes of continuous valuations | ¨ | on A such that |a| ď 1 for all a P A`. For x P SpapA,A`q
write | ¨ |x : AÑ Γ

Ť

t0u for a choice of valuation representing the equivalence class. We define the
topology on SpapA,A`q by considering all open subsets generated by

tx P SpapA,A`q | |f |x ď |g|x ‰ 0u

for some f, g P A.

Theorem 6.6. SpapA,A`q is a spectral space, i.e. Spec of some ring. In particular, SpapA,A`q
is quasi-compact.

Definition 6.7. Let X “ SpapA,A`q and s P A be arbitrary. Let T Ă A be any finite subset
generating an open ideal in A. A rational subset of X is one of the form

Up
T

s
q “ tx P X | |t|x ď |s|x ‰ 0 for all t P T u



SOME SPECIAL CASES OF KOTTWITZ CONJECTURE 25

Rational subsets are open, quasi-compact, and stable under finite intersection, and they generate
the topology on X.

Proposition 6.8. If U Ă X “ SpapA,A`q is a rational subset, then there exists a complete
Huber pair pAU , A`U q with a map ϕ : pA,A`q Ñ pAU , A

`
U q such that SpapAU , A

`
U q Ñ X is a

homeomorphism onto U , and such that ϕ is universal for maps from pA,A`q to complete Huber
pairs which factor over U on adic spectra.

Example 6.9. SpapZp,Zpq has two points: a generic point η corresponding to the p-adic valuation,
and a special point s which factors through the trivial valuation on Fp.

Example 6.10. Let pA,A`q “ pQpxT y,ZpxT yq. The adic spectrum is the closed unit disk over
Qp. Then

Up
tT, pu

p
q “ t|T |x ď |p|x ‰ 0u

is the subdisk of radius 1{p.

The universal property implies that pAU , A`U q is unique up to unique isomorphism. It also implies
that whenever U Ă V is an inclusion of rational subsets, one gets pAV , A`V q Ñ pAU , A

`
U q.

Definition 6.11. Given X “ SpapA,A`q we defines the structure presheaf OX by OXpUq “
lim
ÐÝW rational ĂU

AW . The integral structure sheaf O`X follows similarly:

O`XpUq “ lim
ÐÝ

W rational ĂU
A`W

These are presheaves of complete topological rings. For all x P X, the stalk OX,x is a local ring,
and the valuation | ¨ |x extends to a valuation OX,x Ñ Γx

Ť

t0u whose kernel is the maximal ideal
of OX,x.

Definition 6.12. Let A be a topological ring, A call perfectoid if A is complete, and A˝ is a
bounded subring of A, there exists a topologically nilpotent unit $ P A such that $p|p, and the
Frobenius map, i.e. FrobA : AÑ A, a ÞÑ ap, induces a surjective map

Φ : A˝{$ Ñ A˝{$p

We call such $ a perfectoid pseudo-uniformiser.

Definition 6.13. A perfectoid field K is a complete non-archimedean field K of residue char-
acteristic p, equipped with a non-discrete valuation of rank 1, such that the Frobenius map
Φ : OK{pÑ OK{p is surjective, where OK Ă K is the subring of elements of norm ď 1.

Example 6.14. The following are examples of perfectoid rings: Cp, {Qppζp8q, CpxT 1{p8y.
We explain a little bit more, ζpn denote a primitive pn-th root of unity, and {Qppζp8q denotes the

field obtained by adding all such roots and then take p-adic completion.

Definition 6.15. A subset S of a topological ring A is bounded if for all open neighborhoods U
of 0 there exists an open neighborhood V of 0 such that V S Ă U .

OX is not always a sheaf.

Proposition 6.16. The structure presheaf on SpapA,A`q is a sheaf (pA,A`q is call sheafy Huber
pairs) in each of the following situations:
(1) A is discrete, e.g. the case of schemes.
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(2) A admits a Noetherian ring of definition, e.g. the case of formal schemes.
(3) A is Tate and strongly Noetherian, i.e. AxX1, . . . , Xny is Noetherian for any n, e.g. the case

of rigid analytic varieties.
(4) A is Tate and stably uniform, i.e. for all rational subsets U Ă SpapA,A`q the subring A˝U Ă AU

is bounded.
(5) A is perfectoid.

6.2. Perfectoid spaces.

Definition 6.17. A perfectoid space is a space glued locally from the adic spectra of perfectoid
Huber pairs.

Definition 6.18. Let A be a complete topological ring in which p is topologically nilpotent. The
tilt of A is

A5 :“ lim
ÐÝ
x ÞÑxp

A “ tx “ px0, x1, x2, . . .q P A
N | xpi`1 “ xi for all i ě 0u

equipped with inverse limit topology. The multiplication is defined by coordinate wise multiplica-
tion, and addition law

px` yqi :“ lim
nÑ8

pxi`n ` yi`nq
pn .

Example 6.19. For ring who does not have many p-th root, A5 is not interesting, e.g. Q5p “ Fp.

This is a canonical map # : A5 Ñ A by x ÞÑ x0.

Proposition 6.20. If pA,A`q is a perfectoid Huber pair, then pA5, A`5q is a perfectoid Huber pair
in characteristic p. Moreover, there a canonical homeomorphism SpapA,A`q taking | ¨ |x ÞÑ | ¨ |x ˝#
which
(1) induces a bijection of rational subsets U „

ÝÑ U 5,
(2) induces an isomorphism of rings OXpUq

„
ÝÑ OX5pU

5q.
This operation glues to a functor X ÞÑ X5 from perfectoid spaces to perfectoid spaces in character-
istic p.

Proposition 6.21. Given a perfectoid space X, tilting induces an equivalence of categories

tPerfectoid spaces Y {Xu „
ÝÑ

!

Perfectoid spaces Y 5{X5
)

Example 6.22. If A “ Cp, then A5 – {Fppptqq.

6.3. Analytic adic spaces.

Definition 6.23. A point x in an adic space is analytic if there exists a rational neighborhood
U “ SpapA,A`q of x where A is Tate.

Let A be a complete Tate ring, $ a pseudo-uniformiser of A, A0 is a ring of definition. Then we
define a norm

| ¨ | : AÑ Rą0, a ÞÑ infnPZ:$naPA0
2n.

This induces a topology on A. Therefore, Tate rings are Banach rings.
Now we introduce rank one generalization. If x P SpapA,A`q corresponds to | ¨ |x : AÑ Γ, then

γ “ |$|x “ |$pxq| P Γ must satisfy γn Ñ 0 as nÑ 8. There exists a map Γ Ñ R sending γ ÞÑ
1

2
.

Then we define a new valuation
| ¨ |x̃ : A

|¨|x
ÝÝÑ Γ Ñ Rą0.
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The corresponding x̃ P SpapA,A`q is an Rą0-valued point which specialize to x, i.e. x̃ ù x. Then
| ¨ |x̃ ď | ¨ |, the set of rank 1 points of SpapA,A`q coincides with the set of rank 1 valuations ď | ¨ |.

The point x̃ does not depend on the choice of $. If $1 is another choice of uniformizer, then
log |$px̃q|

log |$1px̃q|
P Rą0.

Note if A is a Huber ring, we may abbreviate SpaA “ SpapA,A˝q.
Let C be an algebraically closed perfectoid field.

Example 6.24. Consider Spapkrrtssq ˆSpa k Spapkrrussq “ Spa krrt, uss. This contains a special
point s such that |tpsq| “ |upsq| “ 0 outside which at least one of u or t is non-vanishing. Both t
and u are topologically nilpotent. So s is the only non-analytic point. The complement Y is covered
by two rational subsets

(6.1)
Up|t| ď |u| ‰ 0q “ Spa

ˆ

kppuqqx
t

u
y, krrussx

t

u
y

˙

Up|u| ď |t| ‰ 0q “ Spa
´

kpptqqx
u

t
y, krrtssx

u

t
y

¯

.

Given x P Y, let κpxq “
log |upx̃q|

log |tpx̃q|
P r0,8s. This defines a continuous surjective κ : Y Ñ r0,8s.

We see Spa kpptqq ˆSpa k Spa kppuqq “ κ´1p0,8q.

Let C be an algebraically closed perfectoid field containing Fp, let Ainf :“W pOCq with pp, r$sq-
adic topology, 0 ă |$| ă 1.

Definition 6.25. We define Y as SpapAinf , Ainfqz tsu where s is the point such that |$psq| “

|ppsq| “ 0. Then Y is analytic, and there exists κ : Y Ñ r0,8s defined by κpxq “
log |ppx̃q|

log |$px̃q|
P r0,8s.

The Frobenius ΦC acts on Y, and κpΦCpyqq “ pκpyq. In particular, ΦC acts discontinously on
Yp0,8q :“ κ´1p0,8q.

Let I Ă p0,8q be a closed interval, BI :“ H0pκ´1pIq˝,OYq, where κ´1pIq means the interior of
κ´1pIq. It can be proved that BI is strongly noetherian, Yp0,8q is an adic space. Let B :“ lim

ÐÝI
BI .

Definition 6.26. The adic Fargues-Fontaine curve is XpCq :“ Yp0,8q{ΦC .

6.4. Untilts.

Definition 6.27. An untilt of C to Qp is a pair pC#, iq where C#{Qp is a perfectoid field, and
i : C

„
ÝÑ C#5 is an isomorphism.

We say that Fargues-Fontaine curve carries untilts of C:

Theorem 6.28. There is a bijection between the untilts of C to Qp, modulo equivalence, to closed
maximal ideals of B.

Proof. Given a maximal ideal m, we have untilt B{m. Conversely, if pC#, iq is an untilt, then we
have a map of multiplicative monoids

OC – lim
ÐÝ
x ÞÑxp

Ñ OC#

denoted by x ÞÑ x#. This lifts to a ring homomorphism

W pOCq “ Ainf Ñ OC#
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sending rf s ÞÑ f#. This extends to

W pOCqr1{ps Ñ C#.

There is a map W pOCqr1{ps Ñ BI . For I large enough, this extend through BI , and composing
with B Ñ BI gives a homomorphism B Ñ C#. �

Recall that we have defined the adic Fargues-Fontaine curve X “ Yp0,8q{ΦC andB “ H0pYp0,8q,OYp0,8qq

which has an action of ΦC . Let BΦC“p denote the subset of elements of B consisting of those b P B
such that ΦCb “ bp, we actually have a functor, as described in [FF] §10.2.1.

tIsocrystals{ku Ñ tVector bundles{X u
where k “ Fp.
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