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2. NOTATIONS AND CONVENTIONS

First, let us fix some notations through out this article:
k: an algebraically closed field of characteristic p.
Ky : the fraction field of the Witt ring W (k).
Ky: an algebraic closure of K.
E o F 5 Q, : asequence of extensions with each one finite over the later one.
Oy : the ring of integers of #, wy: an uniformizer of O, * (resp. =P, resp. **") the algebraic
closure (resp. separable closure, resp. maximal unramified extension) of * taken in K.
Qq: a fixed algebraic closure of Q, for some £ prime, ¢ # p.
vg: normalized valuation of #, i.e. vy(wy) = 1.
F := Op/wF the residue field, and ¢ = Card(F) the cardinal of F.
Fp,: the residue field of Q,.

%: the completion of an algebraic closure of #, e.g. C,, := Q,.

o~

E: the completion of the maximal unramified extension of E taken in Ko, L:=F. o
I' := Gal(F/F) the absolute Galois group of F where F is the algebraic closure of F' taken in Kj.

o : the arithmetic Frobenius automorphism of L/F, I := Gal(F/L) =~ Gal(F/F""), Ig =
Gal(E/E).

W (resp. W%/F) : the Weil group (resp. Weil-Deligne group) of F over F (see [Tate]), Wg':
the abelianized Weil group.

MT: the subgroup of invariants for a I'-module M, My : the group of coinvariants of M, Mioys:
the torsion subgroup of M.

For any reductive group G over F, let G° denote its connected component containing identity and
mo(G) denote the set of all connected components of G. We assume G is connected if without any
other specification. Let G4 denote the derived group of G (it is semisimple) and let Gy, denote the
universal covering group of G (it is simply connected). Z(G) or abbreviated as Z when no confusion
will be caused, is the center of G and set G.q := G/Z. For any field K’ containing F', G+ denotes
the base change; for any finite extension £ o F, and G a reductive group defined over E, the
restriction of scalar Resg/p(G) is as define in [Mill] §2.i.. For any G of multiplicative type, ibid.
§12.f., e.g. atorus, X*(G) := Hom(G, G,,) is called the character group and X (G) := Hom(G,,, Q)
is called the cocharacter group (Hom here denotes the morphisms of algebraic groups).

Let us fix more notations when we consider quasi-split groups as this assumption usually makes
many definitions explicit and is satisfied in many situations: Let B be a Borel subgroup of G and
T a maximal torus contained in B. Let ® (resp. ®*, resp. A*) be the associated (resp.positive,
resp.simple) root system with respect to fixed triple (G, B,T). Let ®* denote the coroot system,
and other notations with ‘co-’ follow similarly. Denote by ¥o(G) := (X*, A* X, A,) the based
root datum, [Mill] Appendix C Definition C.28. Denote by W := N(T')(L)/Z(T)(L) the Weyl group
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of G where N(T)(L) (resp. Z(T)(L)) is the L-points of the normalizer (resp. centralizer) of T in
G. Denote the inner conjugate action by Int(g)(-) = g(-)g .

Let G be a connected reductive group defined over F', then I' acts on Vo (G%), a splitting of a
connected reductive group G is a triple (T, B, {X4} ,ca%); Where T' is a maximal torus of G, B is
a Borel subgroup of G that contains T', and X, is a nonzero element of the root space Lie(G)q,
where Lie(G) is the Lie algebra associated to G, defined in [Mill] §10.b..

Let (7, V) be any representation of G, we denote the contragredient representation of (w, V) by
(mv,VV) (c¢f. [Mill] p471). We call a representation (m,V) of G a F-rational representation if 7
is a rational homomorphism of F-algebraic groups. For any irreducible representation p of G, we
denote the p-isotypical component of V' by V|[p].
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3. INTRODUCTION

Already by 1930 a great deal was known about (local) class field theory. By work of Kronecker,
Weber, Hilbert, Takagi, Artin, Hasse, and others, one could classify the abelian extensions of a local
field F', in terms of data which are intrinsic to F. Namely, there is a reciprocity map (or called
Artin map)

Artp : F* 55 Gal(F™/F)
where F** means the maximal abelian extension of F. This map is continuous and has dense image,
which is the abelianized Weil group Wb

We can formulate it in a local Langlands correspondence way (special attention should be paid
to topology):

Denote by A; (F') the set of isomorphism classes of 1-dimensional continuous irreducible complex
representations (m,V) of GL;(F), that is to say GLi(F) = F* — Autc({v}) = GL1(C). On
the other hand, we denote by G (F) the set of 1-dimensional representations of W (continuous
homomorphisms) Wr — GL;(C). Then Wx — GL;(C) passes to quotient: Wrp — W2 — GL;1(C).

Therefore the existence of a reciprocity map is equivalent to the existence of a bijection:

AL(F) = Gi(F)
Similar but more refined results called Local Langlands correspondence are proved (for GL,,(F'))
or conjectured for all reductive groups.

Now come back to the Artin map, it is natural to ask how to describe Artp explicitly. It is
perfectly solved by Lubin and Tate. Let F* be the profinite completion of F', and write Fx =
Uy x wk where Uy := O is the group of units of F. The fixed field of the image Art(Up) is the
maximal unramified extension F*" with Gal(F""/F) = Z. The fixed field of the image Art(w )
is an infinite totally ramified extension of F' denoted by Fr with Gal(F5/F) =~ Uy. For example,
F = Q,, then wg, = p, ng by Kronecker-Weber theorem equals to ngd the maxunal cyclotomic
extension of Qy, i.e. the extension by adding all roots of unit.

It is easy to construct Q,". Let us be the set of s-th root of 1 in @p for some s € N such that
(s,p) = 1. The discriminant of X* — 1 is a unit in Z,. The field Q,[xs] is unramified over Q,.
Moreover, the residue field of Q] is the splitting field of X* — 1 over F), := Z/pZ, so it has p!
elements with f being the smallest positive integer such that s|p/ — 1. Therefore Up,(s Qpps] is an
unramified extension with residue field E.

We can also construct the totally ramified extension. We have (Qy), = U, 50 Qpltpn (Zp)] where
tpn are the p-torsion parts of G,, (which is closely related to a function [p]¢(T) = f(T) = 2¥ — 1)
and Z, is closure of Z,, taken in a fixed algebraic closure Q,, of Q,. We see {Q, [tpn 1}, as a tower
formed by points, that is to say, 0-dimensional varieties. The action

([m], Q) = ™+ Zp/p" Ly X pipn — ppn
makes u,n a free Z,/p"Z,-module of rank 1, thus we can regard u,» as a Z,-module, isomorphic
to Zp/p"Z,. There is an isomorphism

(Zp/p"ZLp)™ — Gal(Qp[ppn]/Qp)
when passing to limit, we have an isomorphism
Z; — Gal((Qp),/Qp)

Move to a different field: When F is a finite extension of @Q,,, the above process need to be
changed. Those roots of unity fipn (Zj,) arising as the p-torsion points in the multiplicative group
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G, should be changed to g-torsion points of some other geometric objects where ¢ is the cardinal of
residue field of F'. For example, when F is an imaginary quadratic field, we shall use elliptic curves
with complex multiplication. The real difference is that we are changing from f(T) = z?" — 1 to
some other (formal) polynomial to express “torsion points”. Therefore we need to introduce formal
groups or p-divisible groups.

Move to the nonabelian case:

Let G be a reductive group. Via the local Langlands correspondence, we can relate certain
representations of G to some homomorphisms of Galois groups (to be more precise: certain classes
of homomorphisms to the © G). Therefore, like the case for the Artin map, we have the desire to
describe the correspondence. In order to achieve this, we need to generalize the above process to the
nonabelian cases. The situation is much more complicated because we no longer have uniqueness
when passing from objects over residue field to original fields. For example for GL,, (F'), we need to
consider moduli spaces of certain elements and the formal objects defined by them. Then we look
at rigid fibers of those formal objects: these rigid fibers form a tower, called the Lubin-Tate tower.
We consider their £-adic cohomology groups to capture information. For a general reductive group,
we need to use Rapoport-Zink spaces or local Shimura varieties. In the process of building these
theories, we see the need of more general theory of algebraic geometry to describe the inverse limit
of rigid fibers. This motivates us to go to the perfectoid world.
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4. GENERAL THEORY

4.1. o-linear algebra. Recall that we require the field k to be algebraically closed of characteristic
p, we set Ko = W(k) and E o F > Q, to be a sequence of finite extensions and F to be the residue

field of F. We use L to denote the completion of maximal unramified extension of F in Ky, which
equals F.K(. The Frobenius automorphism of L/F is denoted by o.

Definition 4.1. A o-L-space or called F-isocrystal over F, is a finite dimensional vector space V/
over L together with a o-semilinear bijection ¢ : V' — V (i.e. ¢ is a group homomorphism such that
p(av) = o(a)p(v) for all @ € L and v € V). The dimension of V is called the height of o-L-space
(V. 9).

When F' = Q,, the o-L-spaces are called F'-isocrystals.

For two o-L-spaces (V, ¢) and (V',¢’), a homomorphism between them f:V — V' is a L-linear
map such that f(¢(v)) = ¢'(f(v)) for allve V.

In the name, F' stands for “Frobenius”. The F-isocrystals form a Q,-linear category. Moreover,
since we assume k to be algebraically closed, it is a noetherian, artinian semi-simple abelian category,
see [RZ] §1.1. Its simple objects are parametrized by elements of Q. For A€ Q, A = r/s with r, s € Z
and (r,s) = 1, it corresponds to the simple object

0 1
(4.1) E\= | K¢, 1o

p" 0
and Dy = End(E)) is a division algebra (defined in [Mil2] §IV Example 1.8), with center Q, and
invariant —A.

For any o-L-space, we write it as V' = @ V) for its isotypical decomposition. An o-L-space is
called isotypic if and only if there are integers r, s with s > 0 and a Op-lattice M in V such that

(M) = p"M.

Definition 4.2. A filterd isocrystal over L is a triple (V, ¢, F*) given by an F-isocrystal (V) and
a decreasing filtration F* on the vector space V ®g, L such that 7" = (0) and F* = V ®k, L for
some 1, s € Z.

A subobject (V' ¢, F') of (V, ¢, F) is given by a subvector space V' which is ¢-stable such that
V' ®K, L is equipped with the induced filtration.

Definition 4.3. A filterd isocrystal (V, ¢, F*) over L is called weakly admissible if for every sub-
object (V' ¢, F'*) we have

Zi ~dimgrz (V' ®x, L) < ord, det(¢’),
and when (V' ¢/, F'*) = (V, ¢, F*), we have equality.

We can construct a map from the category of finite-dimensional F-rational representations V' of
G to the category of o-L-spaces

V > (VL,QO) = (V ®F L,b- (ldV ®O’))
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4.2. Kottwitz map and Newton map.

Definition 4.4. Two elements b, b’ € G(L) are called o-conjugated, denoted by b <~ ¥, if there is a
g € G(L) such that V' = gbo(g)~!. Let [b] denote the o-conjugacy class of b, and B(G) = B(G, F)
denote the set of o-conjugacy classes in G(L).

Remark 1. The set B(G) is independent of the choice of k, i.e. if k' < k is algebraically closed,
then the resulting B(G, F') are the same. It is proved in |[RZ] 1.16.

Recall the composition of canonical homomorphisms:
P Gge = Ggs = G

Definition 4.5. First assume G splits over F' for a maximal split torus T' < G, i.e. G contains a
maximal torus T = (G,,)" over F, for some n € N, consider the canonical morphism p as above.
We write T for p~H(T) = G*°. Set m1(G) = 711(G,T) := X4(T)/ps(T®). This abelian group is
called the algebraic fundamental group of G.

Now let G be any (not necessarily split) connected reductive group. By the algebraic fundamental
group of G we mean 71 (Gx).

This definition is from [Boroi], We have canonical identifications with what was used originally
by Kottwitz (cf. [Boroi] proposition 1.10, and [Kotl]):

(@) = X*(Z(G))

where G is the connected component of “G, LG is L-group defined in [Bor] §1.2.
In particular,
“3) X*(Z(G)") = m(G)r
Hom (mo(Z(G)"), €%) = (m1(G)r)rors

Let T = B < G7 be a maximal torus and a Borel subgroup defined over F, then the action of
T on X, (T) is defined by

(4.3) Teou:=1Int(g)or(u), Vrel, Vue X,(T)
where g € G(F) satisfies Int(g) o 7(T, B) = (T, B), and 7(u)(:) = 7u(r~!+). It induces an action of
T on 1 (G).

Kottwitz constructed in [Kot4] §7 a group homomorphism

fa: G(L) = X*(Z(G)') = m(G);
When G9¢* is simply connected, &g factors through G : kg = Kgas © pg, where pg : G — G is

the natural projection. There is also a homomorphism
(4.4) v : G(L) — Hom(X4(Z(G)', Z))

sending g € G(L) to the homomorphism x — vr(x(g)) from X*(Z(C:'))I = Homp (G, G,,) to Z,
where vy, is normalized so that wy, has value 1. From the definition of vg, we have vg = Vg © pg
for any G.

Then there is the relation vg = qa © kg, where ¢¢ is the natural surjective map

(4.5) gc :m(G); = X*(Z(G)) = X*(Z(G)); — Hom(X,(Z(G)',Z).
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The kernel of g is the torsion subgroup of X*(Z(G));. If m1(G); is is induced, i.e. has a Z-basis
permuted by I, ¢ is an isomorphism.
We take H°(T', —) on both sides of #g and obtain a homomorphism

Ag 1 G(F) — X*(Z(G))).

For z € m(G)r, we denote the image under the natural quotient map n(G); — 7(G)r by T, then
kqa induces a map of sets

(4.6) ke B(G) > X*(Z(Q)Y) = m(G)r : ka([b]) = R ()

where b is any representative of [b].
Definition 4.6. (Kottwitz map) Define the Kottwitz map kg : B(G) — m1(G)r as above.

Let D := lElE Resg/r G be the pro-algebraic torus defined over F' with character Q. It has
character group Q, and there is a canonical projection D — G,,, dual to the inclusion of characters
Z — Q (c¢f. IDOR] p115 Examples 4.2.1). We put

(4.7) N(G) := (Int G(L)\ Homp, (D, G))<*”

where quotient of Int G(L) means modulo equivalent relation defined by conjugacy action Int(g) :=
g(-)g~*! for ge G(L). If T is a maximal torus of G with Weyl group W, then

(4.8) N(G) = (X4(T)g/W)"
where X (T)g = X«(T)®Q. The proof follows from [Kotl] and the fact that N'(T') = X, (T)' ®Q.

Definition-Proposition 4.7. (Newton map) The group Q* acts on the character group Q of
D, thus it acts on D. Let b € G(L), then there exists a unique element v € Homy, (D, G) for which
there exist an integer s > 0, an element ¢ € G(L) and a uniformizing element @ of F' such that:

(i) sv e Homyz(G,,,G), where sv denotes the composite D > D %> G;
(ii) Int(c) o v is defined over the fixed field of o® in L;
(iii) c-b-ob)-...-0%(b)-0%(c) "t =c- (sv)(w) - L.
The element v is called the slope homomorphism associated to b.
Furthermore, the map b — v that we may also denote by v or vg has the following properties:

(a) Vo) = o).

(b) gba( )1 Int(g) ov, Vg € G(L).

(¢) vy = Int(b) 0 o ().

(d) Vb is trivial if and only if b is in the image of the map H'(F,G) — B(G) (cf. [Kot2] eq.1.8.3).
By taking conjugacy classes: vg([b]) := Ug,p) = Vs, for any b € [b], we call the map vg([b]) the

Newton map of the group G.
This definition-proposition is subtracted from [Kot2] §4.

Remark 2. (1) (b) shows that the Newton map is well-defined, independent of choice of b € [b]. (c)
shows that the image v is defined over F' if, for example, when G is quasi-split.

(2) The morphism v, defines a Q-grading on the vector space V @ L for any F-rational represen-
tation of G. The morphism v is characterized by the property that this grading is the slope
decomposition of the isocrystal associated to (b, V). The slope A of V that appear in the slope
decomposition is independent of the choice of b in [b].
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(3) Note that both kg and v are functorial in G, v(_y : B(—) = N(—) and k(_y : B(=) — m1(—)r
are natural transformations of functors from the category of connected reductive algebraic
groups to the category of finitely generated discrete I'-modules.

(4) v (b) and ke(b) have the same image in 71 (G) ® Q. cf. [Kotd] §6.

Proposition 4.8. For G = GL(V), where V is a h-dimensional vector space over F, then the set
B(G) classifies the o-L-spaces of height h, i.e. there is a bijection

B(G) = {F-isocrystals}
Proof. For be G(L), we associate to it an o-L-space
(Vi,0):=(V®r L,b- (idy ®0)).
There exist uniquely determined rational numbers
A <A< <A

and a uniquely determined decomposition

Vv, =@V
i=1
into the y-stable subspaces for which there exist Op-lattices M; < V; such that
oM M; = Wl M;,  h; = dimg V;

where d; = \;-h; € Z. The subspace V; is called the isotypical component of slope \;. The associated
vy is equal to

T
Uy = @)\1 ldV1
i=1

Here ); - idy, denotes the composition
D 25 G,, = GL(V)

In this case the map vg : B(G) — N(G) is injective, following from Dieudonné-Manin classification
of o-L-spaces, [Kot2] §3. O

Definition 4.9. Associate to b € G(L) there is a functor
Jo(R) :={ge G(R®r L) | b= gbo(g)~"}.
Let J, be an algebraic group that represents this functor, it is called the o-centralizer group.

The fact that functor J, is representable by a smooth affine group scheme is proved in [RZ]

Proposition 1.12.. Note that J, = Jgps (g1 for any g € G(L).

Definition 4.10. A class [b] € B(G) is called basic, if the conjugacy class v ([b]) consists of central
morphisms, i.e. its image is in Z(G). Denote the set of basic classes by B(G)pasic-

The conjugacy class [b] is basic is equivalent to Jp is an inner form of G ([Kot2] §5).

Proposition 4.11. The map
ke X Vg : B(G) — m(G) x (X(G)o/W)F
s injective.

This proposition is proved in [Kotd] §4.13.
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4.3. Rapoport-Zink spaces. Before we introduce local Shimura varieties, we first have a look at
Rapoport-Zink spaces because we know more about them and they serve as important examples
of local Shimura varieties. This part together with local Shimura varieties should be thought as
some general machine, so they look abstract. Later in Example parts 5] we will see hints to various
conditions of this section.

Definition 4.12. A simple rational RZ datum in EL case is a tuple D of the form D = (F, B, V, {u}, [0]),
where

(1) F is a finite field extension of Q,,

(2) B is a central division algebra over F',

(3) V is a finite dimensional B-module,

(4) {u} is a conjugacy class of minuscule cocharacters p : Gm@p — G@p, i.e. {u,ay = +1 or 0 for
all € ®(G, B, T),

(5) [b] € A(G, {u}), where G := GLg (V) is an algebraic group over Q,.

And the following additional condition is satisfied: For u € {u} consider the decomposition of V®@p
into weight spaces, the only weights occur are 0 and 1.

A simple integral RZ datum Dz, in the EL case consists, in addition to data D, of a maximal
order Op in B and an Opg-stable lattice A in V. This induces an integral model G of G over Z,,
namely G = GLp, (A) as a group scheme over Z,.

Definition 4.13. For this case, we consider p # 2. A simple rational RZ datum in the PEL case
is a tuple D = (F,B,V,(, ),*,{u},[b]) where

(1) F, B and V are as in EL case,
(2) (, ) is a nondegenerate alternating Q,-bilinear form on V,
(3) =* is an involution on B satisfying

(zv,w) = (v,z*w), for all v,w €V, and all x € B,

(4) {p} is a conjugacy class of minuscule cocharacters p1 : G, a9, G@ , where G is the algebraic
1P P
group over QQ,, defined by

G(R) = {9 € GLpg,,r(V ®q, R) | there is

4.9
(4.9) c(g) € R* such that (gvy, gv2) = c(g)(v1,v2), for all vi, va € V ®q, R},

(5) [b] € A(G, {u})-
And the following additional condition is satisfied:

a) For p e {u} consider the decomposition of V' ® Q, into weight spaces, the only weights occur
D
are 0 and 1.
(b) We require for any p € {u}, the composition

1 c
G Y i G@p g Gm,@p

m,Q
is the identity. The later morphism denotes the multiplier ¢ : G — G,,,.

A simple integral RZ datum Dz, in the PEL case consists in addition to data D, of a maximal

order Op in B that is stable under involution %, and an Og-stable lattice A in V' such that wA <

AY < A. Here w denotes the uniformizer in Opg, and AV denotes the dual integral lattices with
respect to (1, ). This induces an integral model G of G over Z, with G(Z,) = G(Q,)(GLo, (A).
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In the rest of this part, We will abbreviate J for Jy, and by writing b, we always mean a
representative b in a fixed [b]. Let E be the definition field of {u} and O be the ring of integers of
O, let Op denote the ring of integers of E.

Let Nilpo denote the category of O-schemes S on which p is locally nilpotent. For S € Nilpo
we denote by S the closed subscheme defined by pOs.

Definition 4.14. An abelian fppf sheaf G(see [Vistoli| §2.3) is said to be a p-divisible group if the
following conditions are satisfied:
(i) G =5 @ is surjective.
(ii) G[p™] := Ker(G =£— @) is represented by a finite locally free group scheme over S.
(it) G =lipG[p™].
A morphism f : G’ — G of p-divisible group is called an isogeny if its kernel is a finite group scheme.

A quasi-isogeny between p-divisible groups is an isogeny multiplied by w™" for some n € N.

Let Fj be the residue field of O, and denote it by F for brevity. We fix a pair (X px) as framing
object.

Definition 4.15. We define pairs (X, p) where X is a p-divisible group over S € Nilpo and
p: Op — End(X) is an action of Op on X. We require the Kottwitz condition associated to {u},
i.e. the equality of characteristic polynomials

(4.10) char(p(b)|Lie x,T) = char(b|v,,T), Ybe Op

where Vj is the weight 0 subspace under weight space decomposition associated to any p € {u}.
We require the rational Dieudonné module (c¢f. [Wei] Lecture 1) of X with its action by B and its
Frobenius endomorphism is isomorphic to (V ®p L,b - (id®0)) with b € [b] fixed.

Then we consider the set-valued functor
(4.11) Mp, : Nilpo — (Sets)
S {(X,p,0)}/ =

where

(4.12) {(X7 p,t) | (X, p) is as above, with a Op-linear quasi-isogeny ¢ : X xg S — X XSpecF §}
We can similarly define such functor for PEL case, see [RV] §4.6.

Theorem 4.16. Let Dy, be integral RZ data of type EL or PEL. The functor Mp, on Nilpo s
representable by a formal scheme, locally formally of finite type and separated over Spf O.

Proof. |RZ] Theorem 2.16. O

Fix a simple integral RZ datum, let M = Mp, be the corresponding formal scheme over Spf O
and pass to its generic fibers using [Hub| §4: M := M. Let T be the local system over M defined
by the p-adic Tate module of the universal p-divisible group on M, together with the Op action
and polarization pairing (in the PEL case). Set V = T ® Q,. Let K < G(Z,) be a subgroup of
finite index, we associate to K the rigid space MK = /\/lgZ classifying K-level structure of V
(4.13) T =~ Amod K
see [Farl] Definition 2.3.17. Then M¥ is a finite étale covering of Mgg and for Ky = G(Z,), we

define Mo .= Mgf )
Zp



12 SOME SPECIAL CASES OF KOTTWITZ CONJECTURE

There is a smooth projective variety F = F(G,{u}) over E where F is the definition field of p,
whose points over F correspond to the par-equivalence classes of elements in {u}. The variety F is
homogeneous under G, and is a generalized flag variety for Gg.

Set

]f-rig = ﬁ(G7 {M})rig = (JT XSpec B Spec Ev)rig.

Definition 4.17. We call a pair (b, 1) consisting of an element b € G(L) and a cocharacter u
of G defined over a finite extension K of L a weakly admissible pair in G if for any F-rational
representation V' of G, the filtered o-F-space Z(V) = (V ®r L, bo, F};) is weakly admissible.

Definition 4.18. The set of elements . € F(F) such that (b, 1) is a weakly admissible pair for G
forms an admissible open subset of "¢, called the nonarchimedean period domain associated with
(G, b, {u}) and denoted by F¥* = Fri&(G b, {u})"?, cf. [RZ] Definition 1.35.

Let (Xuniv, tuniv) be the universal p-divisible group over M, with additional structure and
equipped with the universal quasi-isogeny. Then ¢ induces an isomorphism

V ®q, Om — M(Xuniv) ®0, Om
where M (Xuniv) denotes the Lie algebra of the universal vector extension of Xy, and V' the
rational Tate module of X. The surjection M (X) — Lie X thus yields a filtration on V ®q, Oam
which corresponds to a morphism # : M — F"8 which factors through F%®. The period morphism
extends to a compatible system of morphisms

(4.14) K ME — Frie,

which factors through F** and but not compatible with Weil descent data, see [RZ] Definition 3.45.
Therefore we need to modify this by introducing another map in the next subsection.

4.4. Local Shimura varieties and their cohomology. In this section, we assume that G is
quasi-split and split over an unramified extension E of F. We assume from now on that v, is
chosen (in a unique way) so that it represents vg([b]) € (X«(T)0)iym- On Xu«(T)g we consider
the order < given by v < ¢’ if and only if v/ — v is a nonnegative Q-linear combination of positive
relative coroots. Let (Xx(T)g)dom denote the set of cocharacters of T' which are dominant with
respect to B.

For any conjugacy class of {1} of X, (T'), denote by pgom the unique element of {u} in X4 (7T)dom-

For any dominant element p € X4 (T), let T', be the stabilizer of 1 € T', it has finite index as
X« (T) is a discrete I'-module. Define 7:

p=[:T]" ) 7)€ (Xa(T)e)kbom
Tel'/T,

We know from the definition of action that 7 action preserves the set of roots ® and the
resulting 7 is just “taking the average”, thus 7 is in (X4 (T)g)5om-

Let b e G(F) and p € X, (T) be such that b € Ku(wp)K (by Cartan decomposition) for some
hyperspecial subgroup K of G(F') that fixes a vertex in the apartment for T'(L). Then k¢(b) is the
image of p under the canonical projection appearing in definition X4(T) = m1(G)r. We define
pt as the image of p under this canonical projection.

Definition 4.19. If {;1} is a conjugacy class of cocharacters over F', an element [b] € B(G) is called
acceptable with respect to {u} if va([b]) < Hyom- Denote by A(G,{u}) the subset of acceptable
elements of B(G).
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Definition 4.20. A class [b] € A(G, {u}), [b] is called neutral if kg([b]) = u*, denote by B(G, {u})
the set of acceptable neutral conjugacy classes.

Remark 3. There is an interpretation of the above conditions in terms of the Hodge polygon and
the Newton polygon when G = GL,,: [ is called the generalized Hodge polygon.

kg(b) = pf < The Hodge polygon and the Newton polygon have the same endpoints.

ve([b]) < & < The Hodge polygon lies above the Newton polygon.

B(G,{p}) and A(G,{u}) can be defined more generally when G is no longer assumed to be
quasi-split ([Kot4], 6.2). They are nonempty finite sets.

Definition 4.21. A local Shimura datum over F is a triple (G, [b], {i}) consisting of the following
data:

(a) G is a reductive group over F

(b) [b] € B(G) is a o-conjugacy class;

(c) {u} is a geometric conjugacy class of cocharacters, i.e. u: G, 7 — Gz
such that:

(1) {p} is minuscule,
(2) [b] € B(G,{u}).

To a local Shimura datum is associated:

(1) the reflex field E = E(G, {u}) which is the definition field of y inside F;
(2) the algebraic group Jp.

The (conjectural) existence of Local Shimura Varieties We conjecture that for a given
local Shimura datum (G, [b], {i:}) over F', there exists a tower of rigid-analytic spaces {M*} o over
Sp E , where K ranges over all open compact subgroups of G(F'), with the following properties:

(i) each M¥ is equipped with an action of J(F).
(ii) the group G(F') operates on the tower as a group of Hecke correspondences, for definition see
|RZ] Definition 4.57.
(iii) the tower is equipped with a Weil descent datum down to E,
(iv) there exists a compatible system of étale and partially proper period morphism(s) 7% : MK —

F(G,b, {u})™ that is equivariant for the action of J(F) and which is the first component of
a J(F) x G(F)-equivariant morphism of towers of rigid-analytic spaces

(#5,15) s ME > F(G,b, (1)) x A
compatible with the Weil descent data. Here A is the dual abelian group of X*(G,)', 7% is
defined in (4.14) and ¥ : M¥ — A is defined in [RZ] 3.52.

Now we can define the f-adic cohomology of M¥ with compact support (recall that £ is a prime
such that ¢ # p), for each i € N:

HcL(MK> = Hé(MK XE“§7 Z) = <<lﬂ1Hé(MK ®E §> Z/KTZ)> ®z, Qf)) ®q, @Z

It is equipped with a smooth action of J(F') and a continuous action of the inertia group Igp =

Gal(E/E) by functoriality. Due to the Weil descent datum from E to E, the action of Iy can be
extended to an action of Wg. Then HI(MX) is a finitely generated J(F)-module, proved in [Farl]
Proposition 4.4.13.
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For every admissible representation p of J(F'), and every compact open subgroup K, indexes i,
7 € N, we can define the Q,-vector space:

HY (M")[p] = EXHJ(F)(H;(MK% p)

which is finite dimensional over Q, and vanishes for j > rkys(J), i.e. the semisimple rank of .J.
Further, we define:

HY (G (8], 2}))[p] = limy Eixt) oy (HE(ME). p).
K

This is an admissible G(F)-module and a continuous Wg-module, and it vanishes for almost all
i,7 € N.

We denote by Groth(G(F) x Wg) the Grothendieck group of the category of (G(F) x Wg)-
modules over Q, that are admissible as G(F)-module and continuous as Wgr-modules. We define
the alternating sum in Groth(G(F') x Wg), modified by a Galois twist, let d = dim M:

(4.15) H* (G, [b]. {u))[p] = Y, ()" HY (G, [0], {u}))[p)(—d)

1,5 =0

4.5. Summary of local Langlands correspondence. Let us introduce some notations from
local Langlands correspondence: Let Wi, be the Weil-Deligne group of F, for our concerned case
that F' is nonarchimedean, is Wy x SLy(C). We denote by “G the L-group of G, and G = ta)°.
We consider the tempered irreducible admissible representations of G(F'), defined in [Bor| §10,
whose set of equivalence classes is denoted by II(G). We denote by @(G) the set of (tempered)
admissible L-homomorphisms ¢ : Wi — L@ modulo equivalence up to Int(é) action, and elements
of @(G) are call L-parameters or Langlands parameters, see [Bor] §8.2. For ¢ € #(G), we consider
S, := Cents(p) the centralizer of image of ¢ in G. @ is called a discrete L-parameter if the image
of ¢ is not contained in any proper Levi subgroup of LG, which is equivariant to Sg cZ (CAJ)F .
The local Langlands conjecture for reductive groups ([Kal| §1.1 Conjecture A) tells us: there is a
natural surjection LLC : II(G) — ¢(G) with finite fibers, or called L-packet, denoted by II,(G) for
each ¢ € &(G). ¢ is called elliptic if the restriction of ¢ to SLy(C) is trivial. We require all ¢ for
our discussion to be elliptic.

When G = GL,, it means that ¢ corresponds to a supercuspidal representation under local
Langlands correspondence [Ren).

4.6. The statement of Kottwitz Conjecture. We set A\, = kg ([b]), A\px = kg ([b*]). In order
to state the Kottwitz Conjecture, we make the following assumptions throughout this section.

Assumption 4.22. :

(1) b is basic, i.e. J is an inner form of G.
(2) G is a B-inner twist of the quasi-split form G* of G, i.e., there exists b* € G*(L) such that G
is isomorphic to Jyx of G*.

Remark 4. (i) The assumption (2) is satisfied if G has connected center.
(ii) If G is quasi-split, and Apx = 0.
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Recall that 71 (G)r = X*(Z(G)F). From Kaletha’s refined local Langlands correspondence [Kall
§1.4, there are identifications of L-packets for G and Jy:

II,(G) = {irreducible algebraic representations 7 of S, | T|Z(é)p = \px }

T Tx
4.16
(4.16) II,(J) = {irreducible algebraic representations 7 of S, | Tlz@r = Ao + A}

p—=Tp

Definition-Proposition 4.23. For any ;1 € X, (G), there exists a representation ry,,;, of L@, unique

up to isomorphism, satisfying the following two properties:

(a) Asa G representation, ry,; is irreducible with highest weight u.

(b) Let y be a choice of splitting of G and assume that it is fixed by T', then the subgroup Wy of
L@ acts trivially on the highest weight space of () corresponding to y.

~

For the proof, see [Kotl] lemma 2.1.2. The identification X, (Z(G)) = X*(G) says that we can
associate to p a character of G, the irreducible representation generated by p under Int(G) action

A~

is what we need. By 1' and li 1 determines an orbit of the Weyl group of (é’, T) acting on

~

X*(T), thus it makes sense to say ry,; is an irreducible representation.

CONJECTURE 4.1. (Kottwitz Conjecture). Under the assumptions on (G, b, {u}) above, let
¢ be a discrete Langlands parameter for G. Denote by ¢g the restriction of ¢ to Wg. Recall that
T{u is the representation of L@ defined by {u}, 77 is the contragredient representation of 7. See
T{u} © ¢E as a representation of Sy x Wg via

(T 0o pE)(s,w) =144 (s - pE(w)).
Then, for p € II,(J), we have an equality in Groth(G(F) x Wg):

H*((G,[0]. {uh)[p] = (=1)" Y] ﬂHomsw(ﬁrC@TP,mowE)(—g)

well, (G) 2
where d = dim M.

Remark 5. M.Harris and R.Taylor have proved the GL,, case with p = (1,0,...,0) [HT], S.W.Shin
has proved it for Resg/q,(GLy), F/Q, unramified case, [Shi]. M.Strauch considers the weakened
version by ignoring the Wg action, in the Lubin-Tate case for an arbitrary F/Q, [Str2].

Remark 6. (i) If ¢ is a discrete character Langlands parameter, Extf,(F)(Hg(MK/), p)=0,7>0,
[Ren| VI 3.6. proposition.
(ii) In many cases, studied in [Datl], we have Hom j gy (HL(M™), p) =0, i # d.
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5. EXAMPLES

5.1. Kottwitz conjecture for torus. Assume that G = T is a torus over F, for any p : G,,, = T,
the conjugacy class {u} consists of only one element as T is commutative. B(G,{u}) consists
of a single element, A(T,{u}) = (Xu(T)r)tor, J»p = T since T is commutative. We note that
71 (T) = X, (T), the Kottwitz map is explicitly constructed in [Kot4] §7, A, determines v, as is
shown in [RV] Example 2.2. r(,; is just p and v, = p. We have M(T, [b], p)* = T(F)/K. All 7, =
appearing in are just characters. The cocharacter p defines a homomorphism of tori:

Resg/p p Ng/F

N# :ResE/FGm TE T

where N denotes the norm map. Let
Artp : B — Gal(E/E)*

be the Artin map normalized by @ — Frob in Gal(E/E), where Frob means the arithmetic Frobenius
morphism in Gal(E/E). Let x,, : Iz — T(F') be the following composition map:

Ip — 0% 25 (F)
7= Nu(Art ™ (7] pa))

The action of Ig on T(F)/K is given by

(5.1)

Ve e T(F), ~(xK)=xu(7)zK

For varying K, these T(F)/K form a tower of rigid-analytic spaces over Sp(E), the action of
J(F) x T(F) on K is by (a,b)zK = abx K, this action maps each element of the tower to itself.

The simplifications in the remarks [f] hold and note that d = 0. We recall that the action of
J x W is smooth, thus

ling HY(M™) = lim HY(T(F)/K) %, SpE,,Qy) = liy C2 (T(F)/K) = CX(T(F))
K K K

Since T is compact, by Peter-Weyl theorem [Sep| Theorem 3.24, CX(T(F)) = C*(T(F)) =
@Tef(F) 7® 7. Hence on the left hand side of (4.1) becomes:

H* (T, [b) {n})p] = Home () (C*(T(F)), p) = Homrp(iy ( D 7@7,p) = p
TeT(F)

We have S, = T and:
II,(T) = {7 characters of T | 7|7 = 0}
II,(J) = {7 characters of T | 7| pr = Ao}
In the torus case, the right hand side of (4.1):

Homz(7), ry 0 @) = Homg(p, 1) = p
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5.2. Lubin-Tate formal group laws. Recall from local Langlands correspondence for GLy (F),

we have F'* ﬁ» Wab. Lubin-Tate theory understands Artp by I1-dimensional Op-module.
rtp

We will write objects after reduction, i.e. base change to residue field, in math bold type, for
example Xp := X ®o, (Op/wOpr) where X is defined over OF.

Definition 5.1. A one-dimensional commutative formal group law X over a commutative ring A
is a power series X (-,-) € A[[S,T]] satisfying the properties:

(1) X(S,T) =S+ T+ higher terms;

(2) X(5.T) = X(T, ),

(3) X((5,1),U) = X(8,X(T,U));

(4) There is a g(T) € A[[T]] with X (T, ¢(T)) = 0.

Definition 5.2. A 1-dimensional formal Op-module law over a commutative ring A is a formal
group law X over A together with a family of power series [a]x for a € Op that represent a
homomorphism O — End4(X) such that [a]x (T) = aT+ higher terms.

If we consider A = F, the residue field of maximal unramified extension F", then the homomor-
phism Op — Endp(X) is just the reduction map Op - Op/wprOp =F c F.
Let f(T) € Ox[[T]] be any power series satisfying:

(1) f(T) = wT+ higher terms,
(2) f(T)=T9(modw).

Theorem 5.3. There exists a unique 1-dimensional formal Op-module law Xy over Op for which
[@]x,(T) = f(T) and of height 1, i.e. [w]x(T) = T9 modw. Furthermore, if g is another power
series satisfying the two criteria above, then Xy and X, are isomorphic.

Proof. See [Mil2] Corollary 2.16. O

We define the following objects:
X[@™)(Op) = {x € Op, [@w™]x(x) = 0}, abbreviated as X[w™]. Using some facts from
commutative algebra, we can prove that X[w™] is a free Op/w™Op-module of rank 1. T (X) :=
im X[w™], Iy = F(X[@™]), Foo :=U,, Fm-
Gal(F,,/F) action on X[w™] =~ O /w™Op naturally thus it induces an isomorphism: Gal(F,,/F) —
Y
(Op/@™OFr)*. Pass to inverse limit,

lim ~,, : Gal(F,/F) = OF.
m

From local class field theory, and the identification Gal(F.,/F) =~ Gal(F/Fu") = I8 where I%
denotes the abelianized inertia group, we deduce lim ., = Art;ﬂ1 | rab-

5.3. Kottwitz conjecture for GL;. In the subsection above, let h = 1, M constructed there has
dimension 0. The p-divisible group Xy is just the multiplicative group, and since any lift of X is also
the multiplicative group, as is shown in Theorem [5.3] Therefore M is the discrete sets with level
structure o : F = im pgn (F) @op F = F, where pgn(F) := {reF |27 =1}. G=J=FX,
Wr acts through the Artin map.
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5.4. Lubin-Tate tower. Let X, be a formal Op-module with height h, denoted as ht(Xg) = h
over E, which means that the kernel of multiplication by wp is a finite group scheme of rank q"
over IF. Let C be the category of complete noetherian local O -algebra with residue field IF.

Definition 5.4. For A € C, deformations of Xy over A are pairs (X,:) such that X is a 1-
dimensional formal O p-module over A, with an isomorphism ¢ : Xg = Xr = X ®4 F.

Definition 5.5. For A € C with maximal ideal m 4, we define a structure of level m on a deformation
(X,1) € My(A) as an A-module homomorphism

a: (Op/@™Op)" - X[w™](A) € ma
such that [w]x(T) is divisible by
(T = a(a))
ae(Op /@™ Op)"

where X[w™](4) :={z € A, [@™]x(z) = 0}.

For each m > 1, let Uy, = 1 + @i (Maty«,(OF)), which is called the m-th principal congruence
subgroup inside Uy := GLp(OF).
Definition-Proposition 5.6. Define the set-valued functor M((}m on the category C

C — (Sets)

(52) A {(X,,), | (X,¢) is a deformation of Xy over A, « is a structure of level m} / =~

where (X,t,a) = (X',¢/,d/) if and only if there is an isomorphism (X,¢) — (X’,¢/) of formal
Op-modules over A that is compatible with level structures, denoting such equivariant classes by
[X,t,a]. Then M,(J?i is represented by a RS € C which is finite flat over Ox[[T1,...,Th—1]] and
R(()O) ~ Op[[T1,...,Th-1]] (non-canonically).

Proof. |Dri| Proposition 4.3. O

Remark 7. There is a universal formal group X" over A" := O 4[[T1,...,T}—1]], together with
an isomorphism ("™ : Xy =5 X ® quniv F. Whenever A belongs to C and (X, ¢) is a pair as above,
there are unique elements (the maximal ideal of A) such that (X, ) is the pull-back of (Xiv, univ)
along the continuous map Op[[Th,...,Th—1]] — A sending T; to x;.

Let X be a formal Op-module over A € C, X is called to be of height h if Xz has height h. For
any isogeny to € Home, (Xo, X5), its height ht(co) is the number h such that rank of Ker(ty) over F
is ¢". For any quasi-isogeny ¢ € Homo, (Xo, X5) ®o, F', we define its height by ht() = ht(w”) — hr,
where 7 is chosen such that @w". € Home,. (Xo, X).

Definition 5.7. Define the functor MI(J]: for k € Z from C to category of sets:
¢ X is a formal Op-module of height h over A,

(5.3) (X,t,a), © A quasi-isogeny of height k, ¢ : Xo — X, /=
o A level m-structure «

)

By the uniqueness of Xg up to isomorphism, we have M((J0 ~ M[(J}j:, but the isomorphism is

m

not canonical. Therefore M gfj is also representable by a local O j-algebra, denoted by Rg,]f) which

for varying k, m fixed, are all isomorphic. We set My, =[],z M((]]: Consider on Rﬁ,’i) the adic
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topology given by its maximal ideal m ), we define the formal spectrum Spf (Rg,]f)), also denoted

by ML(,IZ)L, and denote their union by My, = [, Spf(Rgi)).

Now we define group actions on My, . Let [X, ¢, a] be any element of My, (A).

Denote by J or D* the group of self quasi-isogenies of Xy. Let Op := Endp,. (X() be the maximal
order of central division algebra D with invariant 1/h over F. We define that d € D* acts on the
right by [X, ¢, a].d = [X,t0d,a]. If [X,t,a] € M((Jlji (A), then [X,¢,a].d € Mé’:rv(Nrd(b)))(A), where
Nrd : J — F' denotes the reduced norm.

Next, we define the action of the group GLj,(F') on the tower {My, }
for integers m = m’ = 0 such that

Let g € Maty, x4 (OF),

mez-*

90} < @™ ("MOg,
we define a right action g, m' : My,, (A) — My, ,(A) by [X,¢,a].g. By our assumption on g, we get

gOh = O, and gO%/OR can be viewed as a subgroup of (Or/w ™Or)". A formal Or-module
X' over A is defined by taking the quotient of X by the finite subgroup a(gO%/O%) denoted by
X' = X /a(gOk/O%). Moreover, left multiplication by g induces an injection:
@ " OO} £ w O /g0
and the composition with the map induced from level structure
(@ " OR/OF)/(9Ok/OF) — X /a(gOk/OF) = X'

together gives a level m/-structure

o OO — X'[@™](A)

Finally, define ¢/ to be the composition of ¢ with Xz — (X')z. If element [X, ¢, ] is in M((Jk) (4),
then [X,¢,a].g is in M((kav(det g))(A).

Now we define the action of a general g € GLy(F). We choose r € Z such that (™ "g)~! €
Matpxp(Op). Then m = m’' = 0 with

w "gO% C wf(mfm/)O?;
and for [X, ¢, a] € My, (A) define [X',/,d'] = [X, 1, a].(w "g) as above and put
[X,t,a].g=[X",{ ocw™",d]

This construction gives natural transformation
(54) g: MUm — MUm/

We can check that it is independent of r or w. In particular, for each m there is an action of Uy on
My which commutes with action of D*.

m

5.5. Rigid fibers. We follow [Hub] §4 and define an adic space t(M((]’jj) associated to M((]’:z (and
to My, ). The set of points of the underlying topological space consists of all (equivalence classes

of) continuous valuations | - |, on R such that |flo < 1forall fe R'Y) . The set of valuations
|- |, with |w]|, = 0 is a closed subset which we denote by V(w). The open complement inherits the
structure of an adic space and we put

MP = (M)~ V(w), and My, = [ [ME)

m m
keZ
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For m > m’, there are canonical maps given by restriction of level structures
Muy,, — My,

which are étale and Galois with Galois group Uy, /Uy, = GL,(Op/@™).
For an open subgroup U < Uy, we choose m larger enough such that U,, < U. Since the action
of U/U,, on My, respects the components ngk)

My = Mo, /(U/Uy)

For any g € GLj,(F) and an open subgroup U < Uy such that g='Ug < Uy there is a morphism
of analytic spaces

(5.5) My = Mgy,

All the spaces My also come with an induced action of J which commutes with the morphisms
induced by elements g € GLy,(F).
We can give a description of what will happen when passing to limit, following [Wei| Lecture 2:
If we fix m’ = 0, we have a tower of rigid spaces {My,, },.~o, Muv,, — My, is an étale covering
of the rigid disk with Galois group GL,(Or/@™). We would like to produce a space M which is
the inverse limit of the My, . Such a space doesn’t exist in the category of rigid spaces, so we shall
have to content ourselves with the following definition on the level of points. Let K’ > W (F) be a
field admitting a valuation extending from W (F), then M(K") is the set of triples (X, ¢, a) where
(i) X is a formal group over Ok,
(ii) A quasi-isogeny ¢ : Xo ®f Or'/wr Oxr — X Qo,., Or'/wk Ok,
(iii) An isomorphism of K’-vector spaces « : Lir_nm((’)Kf/w}’(l, OK’)h®OK, K = lim X[wg]®o,.
K/
two points (X, ¢, @), (X’,¢/,a’) determine the same point of M if there is an isogeny X — X'
translating one set of structure to the other.
We can define three group actions on {My,, },.~¢-

Denote by J or D* as before. The element d € D* acts on M on the right by (X,¢, @) N
(X,tod,a).

Let G = GL,(F), then each element g € G sends (X, ¢, ) to (X, ¢, a0 g).

There is also a Weil group Wy action on M. Let w € Wg that induces Frobg, n € Z action on
F/F, where Frob, : # — 2. Let (X,t, ) be a Cp-point of M. Then we have the p-divisible group
w(X) by applying w coefficient-wise to a formal group law representing X. And w acts on ¢ gives
T Xgn ® Oc,/pOc, — w(X) ® Oc, /pOc,, where Xgn is Xy with coefficients translated after n
times Frobenius map. There is also a canonical action on «.

, we define

5.6. f-adic cohomology groups. Now we introduce the cohomology groups, from now on, we fix
a prime number £ # p, where p = char(F).

Lemma 5.8. For any open subgroup U < Uy and any j € Z, the Qq-vector spaces
(5.6) H(MY x . F Q) = (1@ H{(MY x . F, Z/M)) ®z, Q

are finite-dimensional and the induced action of OF, on these spaces is smooth. The cohomology
groups Hé(./\/lg) x5 F,Qq) vanish fori <h—1 and i > 2(h —1).
Proof. [Str2] Lemma 2.5.1. O
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Next, we set
(5.7) HY(My) = Hi(My x  F. Q) == @ HiMY x s F, Q) @, T
jez
On each Q,-vector space, using (5.5) there is an induced Uy x J action as long as g~'Ug < Uy
Hé(MgflUg) - H;(MU)
These give rise to a representation of GLp(F') x J on
Hi(M) i= limy Hi(My)
U

where limit is taken over all compact open subgroups U < Uj.

5.7. Weak Kottwitz conjecture for GL;, h > 2. We continue to use the notations from the
four subsections above, and give the statement of Kottwitz conjecture for GLj, h > 2:

Theorem 5.9. Let JL denote the local Jacquet-Langlands correspondence map [HB| §13, and recall
that LLC denotes the local Langlands correspondence, ibid. §8. There exists a bijection between
irreducible supercuspidal representations p of GLp(F) and irreducible h-dimensional representations
of Wr having the property that for all irreducible supercuspidal representations p with Q,-coefficients
we have:

Homg (H!' (M, Qy), p) = JL(p) ® LLC(p).
Homg(HF(M,Q,),p) =0, k# h —1.

as (virtual) representations of J x Wp.

(5.8)

This result has been be stated in different forms by different authors, up to twist or taking
contragredient of LLC(p). Here we give a sketch of the proof for the weak version without Weil
group action. It is origianlly given by [Strl] and [Str2].

We write G to mean GLy,, H! to mean H:(M) for simplicity. We put

Homg(HY, p) := Z(—l)i Homg (HY, p).
i
Proposition 5.10. For each i € Z, the representation Homg(HE, p) of J is a finite-dimensional
and smooth, and in the Grothendieck group of admissible representations of J, the following equality

holds:
(5.9) Homg (HZ, p) = h- (=1)"~" JL(p).

Here we ignore the Weil group action, thus LLC(p) is actually an h-dimensional Weil represen-
tation only appear as a multiplicity of JL(p) by & in the Grothendieck group of J.

Before going to the proof, let us do some preparations first.

By the fundamental resuit of Bushnell-Kutzko in [BK], we know that p is induced from a (finite-
dimensional) irreducible representation A of some open subgroup U, that contains and is compact
modulo Z(G) cf. [BK|, Theorem 8.4.1..

We thus write

p = c-Indg (A) = Indg (V).
By Frobenius Reciprocity [HB] §2.4

Homg(HY, p) = Homg (HX,N).

c
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Moreover, the character of p is a locally constant function on the set of regular elliptic elements
(i.e. whose characteristic polynomial is separable and irreducible) of G. For an element g € G, and
some character x, of p, there is a formula of characters (see [He|)

(5.10) Xo(9) = > xa((9)'gg)
9'€G/U,, (g')~tgg'€U,

For regular elliptic g the number of ¢’ such that (¢')~'gg’ € U, is finite.

For p as above, the representation m = JL(p) is characterized by the following identity. Let g € G
and b € J be regular elliptic elements with the same characteristic polynomial. Then the following
character relation holds

(5.11) Xa(b) = (=1)"" x,(9)
It is proved in [Row| Theorem 5.8.

Proof. We first prove the finiteness of Homg(H?, p) as representation of J.

The element diag(w,..., @) in Z(G) acts as scalar on p, and we denote this scalar by ch for
ce Q. Put ((g) = ¢ v(4et9), For any v € H*, @ - v means the action of @ on v as an element of
G. Then:

Homy, (HZ, A) = Homy, (HZ ® (,A® ()

(5.12) = Homy, (H*®()/{v—c"w v |ve H,),A®()

—c(Nrd(

For be J, £ is a character given by £(b) = ¢ b)), We can show

(H;"@g)/<vfc*"w~v | veHé>

as representation of G x J is isomorphic to the natural representation of G x J on

(h_n,l Hf(MU/wZ)> ®¢
U
where limit is taken over all compact open subgroups U c Uj.

The isomorphism is constructed as follows: for v e H* (Mg),@EL v is mapped to ¢"FwF

‘v E
HY (Mgb),@@), where j = jo + nk with 0 < jo < n. This is actually a G x J-isomorphism, hence
we get the following identity of representations of J:
Homg (HZ, p) = Homy, (H} (Moo /m"),A® () @ ¢
where ~
H} (Mo /w”) = lim HY (Mg /") = lim HY (Mu/w” x ;5 F,Qy)
K U

Taken as a representation of G, H* (M, /w?) is admissible because for any U < Uy that is normal
in U, and satisfies A|y is a multiple of trivial representations of U, the U-invariant vector subspace
is just the finite dimensional vector space H (Mg /w?), by Lemma

Therefore

(5.13) Homg(HY, p) :Hom](H;"(./\/lU/wZ),/\®C)®Cv

where I = U,/w?”U is finite group. This expression of Homg(H, p) involves only finite-dimensional
vector spaces. O
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The next step is to compute the trace of elliptic element b € J on (5.13)). We have

1)l Hona(t,p) = 2 3 (0,07 (Mo /) - xoscr )
yel

Now we want to use Lefschetz trace formula to replace the terms in the above sum by an expression
involving the number of fixed points and some additional terms.

Proposition 5.11. In the above setting, let Fixy (7, b~ 1) be the number (with multiplicity) of fived
points of (7,b71) on (My/@w?)(F), and By (y,bt) be the class function with respect to ~y such that
(5.15) 2 Bu(1b7) e ) =0

yel

Then there is a trace formula of the following form
tr ((p, 0~ ") HY (My/w")) = Fixp(y,07") + Bu(y,07").

We will not prove this formula. We note that the class function By (-,b71) can be written
as ), arxr where 7 runs over the set of equivariant classes of irreducible representation of I.
Those T with non-zero a, are call the representations that occurs in the boundary. The preceding
formula says ‘“no representation that gives rise to a supercuspidal representation occurs in
the boundary”.

Therefore,

¢!
#1

tr(b| Homg (H¥, p)) = D Fixp (1,671 - xaec(v )
~el

Finally, we state the Fized point theorem:
Theorem 5.12. Let g, be element as in , then

Fixp(y,07') =h-#{ge G/=w"U | g 'gpg =~}

1

The identity G~ 1grg = v~! means that for some representative g of g € G/w”U we have g~1gpg € U,
1

and the class of g gpg in I is vy~ 1.
Proof. See [Strl] §4. O
Now we come back to prove Theorem [5.10]

Proof. Let b e J be regular elliptic. Then the preceding discussion gives

¢!

tr (b Home (H? . p)) = 7

h-xaec (G 959)
9eG/w?U, g—tgvgel

(5.16) =h Z XA (77 99)
geG/U,, g~ 'gpgel,
=h- Xp(gb)
= h(=1)"" X1 (0)-
where the first equality follows from Fix point theorem, the second equality comes from ((g~1g,g) =

cvldet(gn)) — c—vldet(v)) — ¢ (b), the third equality follows from (5.10) and the last equality is by
(5.11)). |
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6. TOWARDS PERFECTOID SPACES AND THE FARGUES-FONTAINE CURVE

We can prove Kottwitz conjecture for GL;, with some specially chosen b and {u} either using
global methods like [HT], or only using local methods but prove weaker version like [Strl] and [Str2].
Some of the obstruction for the pure local proof lies in that the Weil group action is complicated,
and the description of infinite level of rigid fiber is lacking. In subsection 5.5 we have some trouble
to describe the rigid fiber after passing to limit—we only have a description on the level of points
for some finite field extension. This problem is solved if we use the embedding into products of
universal covers of p-divisible groups, P.Scholze and J.Weinstein show that Lubin-Tate Tower at
infinity level is perfectoid in some sense, as is done by [SWI|. We are thus led to introduce the
perfectoid space setting and the Fargues-Fontaine curve.

6.1. Adic spaces. All rings are commutative.

Definition 6.1. A Huber ring is a Hausdorff topological ring A containing an open subring A
such that the topology on Ag coincides with the I-adic topology for some finitely generated ideal
I c Ay. We call Ay a ring of definition, and (A,I) a couple of definition.

We let A° = A be the subring of power-bounded elements.

Example 6.2. For A = Q, with p-adic topology, A° = Z,. We can take Ay = Z, and I = (p).

Definition 6.3. Given A, a ring of integral elements is an open and integrally closed subring
A' < A with AT € A°. A Huber ring is called a Tate ring if it contains a topologically nilpotent
unit, i.e. x € A such that lim,_,, " = 0 and we call such x a pseudo-uniformizer.

Now we declare that from now on, the letter I' is used to denote a totally ordered abelian group,
not the absolute Galois group any more.

Definition 6.4. Given a topological ring A, a continuous valuation on A is a function |-|: A —
I'(J{0} satisfying:
(1) |ab| = |a[[b] and |a + b] < max([al, []),
(2) 0] =0and |1] =1,
(3) for all y € Im| - |, the subset {a € A: |a| <~} is open in A.
We say |- | and | - |" are equivalent if the condition
la| < |b| < |a|’ < |b| for all a, be A

Definition 6.5. Given (A, A™) we define the adic spectrum Spa(A, A™) to be the set of equivalence
classes of continuous valuations | - | on A such that |a] < 1 for all a € A*. For = € Spa(A4, A™)
write |- |, : A — ' J{0} for a choice of valuation representing the equivalence class. We define the
topology on Spa(A4, A*) by considering all open subsets generated by

{z € Spa(4,A) [ |f]s <lgl. # O}
for some f, g € A.

Theorem 6.6. Spa(A, A1) is a spectral space, i.e. Spec of some ring. In particular, Spa(A, A1)
18 quasi-compact.

Definition 6.7. Let X = Spa(A4,A%) and s € A be arbitrary. Let T < A be any finite subset
generating an open ideal in A. A rational subset of X is one of the form

T
U(E):{xeX | [t|x < |$|w # 0 for all t € T}
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Rational subsets are open, quasi-compact, and stable under finite intersection, and they generate
the topology on X.

Proposition 6.8. If U ¢ X = Spa(A,A") is a rational subset, then there exists a complete
Huber pair (Ay, Af;) with a map ¢ : (A, AY) — (Ay, Af;) such that Spa(Ay, Af,) — X is a
homeomorphism onto U, and such that ¢ is universal for maps from (A, A1) to complete Huber
pairs which factor over U on adic spectra.

Example 6.9. Spa(Z,,Z,) has two points: a generic point 7 corresponding to the p-adic valuation,
and a special point s which factors through the trivial valuation on Fy,.

Example 6.10. Let (4, A") = (Qu,(T),Z,{T)). The adic spectrum is the closed unit disk over
Qp. Then

U(

{T};”U — {|T]s < Iple # 0}

is the subdisk of radius 1/p.

The universal property implies that (Ay, A;}) is unique up to unique isomorphism. It also implies
that whenever U < V is an inclusion of rational subsets, one gets (Ay, A},) — (Au, Af).

Definition 6.11. Given X = Spa(A, AT) we defines the structure presheaf Ox by Ox(U) =
lim Ay . The integral structure sheaf O3 follows similarly:

<—W rational cU
+ _ : +
0x(U) = lim Ay
W rational cU

These are presheaves of complete topological rings. For all x € X, the stalk Ox , is a local ring,

and the valuation | - |, extends to a valuation Ox , — I'; | J{0} whose kernel is the maximal ideal
of OX’J;.

Definition 6.12. Let A be a topological ring, A call perfectoid if A is complete, and A° is a
bounded subring of A, there exists a topologically nilpotent unit @ € A such that w?|p, and the
Frobenius map, i.e. Froby : A — A, a — aP, induces a surjective map

b A°w — A°Jw?
We call such w a perfectoid pseudo-uniformiser.
Definition 6.13. A perfectoid field K is a complete non-archimedean field K of residue char-

acteristic p, equipped with a non-discrete valuation of rank 1, such that the Frobenius map
& : Ok /p — Ok/p is surjective, where Ok < K is the subring of elements of norm < 1.

Example 6.14. The following are examples of perfectoid rings: C,, ngfp\oo), C(TP™,
We explain a little bit more, (,» denote a primitive p™-th root of unity, and Q,({p=) denotes the

field obtained by adding all such roots and then take p-adic completion.

Definition 6.15. A subset S of a topological ring A is bounded if for all open neighborhoods U
of 0 there exists an open neighborhood V of 0 such that V.S < U.

Ox is not always a sheaf.

Proposition 6.16. The structure presheaf on Spa(A, A1) is a sheaf ((A, AT) is call sheafy Huber
pairs) in each of the following situations:

(1) A is discrete, e.g. the case of schemes.
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(2) A admits a Noetherian ring of definition, e.g. the case of formal schemes.

(3) A is Tate and strongly Noetherian, i.e. A(Xy,..., X, ) is Noetherian for any n, e.g. the case
of rigid analytic varieties.

(4) Ais Tate and stably uniform, i.e. for all rational subsets U < Spa(A, A1) the subring Ay, < Ay
is bounded.

(5) A is perfectoid.

6.2. Perfectoid spaces.

Definition 6.17. A perfectoid space is a space glued locally from the adic spectra of perfectoid
Huber pairs.

Definition 6.18. Let A be a complete topological ring in which p is topologically nilpotent. The
tilt of A is

A= lim A= {z = (20,21,72,...) € AV | 2l | =z, for all i > 0}

equipped with inverse limit topology. The multiplication is defined by coordinate wise multiplica-
tion, and addition law

n

(x+y); = Um (Tiyn + Yisn)? .
n—o0
Example 6.19. For ring who does not have many p-th root, A” is not interesting, e.g. Q'Z’, =T,.

This is a canonical map # : A” — A by z — .

Proposition 6.20. If (A, At) is a perfectoid Huber pair, then (A°, A*") is a perfectoid Huber pair
in characteristic p. Moreover, there a canonical homeomorphism Spa(A, A1) taking ||z — ||z o #
which

(1) induces a bijection of rational subsets U —> U®,

(2) induces an isomorphism of rings Ox (U) <> Ox»(U).

This operation glues to a functor X — X from perfectoid spaces to perfectoid spaces in character-
1stic p.

Proposition 6.21. Given a perfectoid space X, tilting induces an equivalence of categories

{ Perfectoid spaces Y X} — {Perfectoid spaces Yb/Xb}

JE——

Example 6.22. If A = C,, then A’ = F,((1)).
6.3. Analytic adic spaces.

Definition 6.23. A point = in an adic space is analytic if there exists a rational neighborhood
U = Spa(A, A™) of z where A is Tate.

Let A be a complete Tate ring, w a pseudo-uniformiser of A, Ag is a ring of definition. Then we

define a norm
|-]: A—>Reg, a— infpezimnaca, 2™

This induces a topology on A. Therefore, Tate rings are Banach rings.

Now we introduce rank one generalization. If x € Spa(4, A™) corresponds to |- |, : A — T, then
v = |w|s = |@(z)| € T must satisfy v — 0 as n — o0. There exists a map I' — R sending v — 7
Then we define a new valuation

| s AT SR,



SOME SPECIAL CASES OF KOTTWITZ CONJECTURE 27

The corresponding & € Spa(A, A1) is an Rs g-valued point which specialize to x, i.e. & v~ x. Then
||z < ||, the set of rank 1 points of Spa(A, A™) coincides with the set of rank 1 valuations < |- |.
The point & does not depend on the choice of w. If @’ is another choice of uniformizer, then

log | ()|

—————— e R.p.
log|w'(#)] ~ "
Note if A is a Huber ring, we may abbreviate Spa A = Spa(A4, A°).
Let C be an algebraically closed perfectoid field.

Example 6.24. Consider Spa(k[[t]]) Xspar Spa(k[[u]]) = Spak[[t,u]]. This contains a special
point s such that |¢(s)| = |u(s)| = 0 outside which at least one of w or ¢ is non-vanishing. Both ¢
and u are topologically nilpotent. So s is the only non-analytic point. The complement ) is covered
by two rational subsets

U] < Jul % 0) = Spa (KX HIIKD)

U(ul < 1t # 0) = Spa (K(®)D, KIHKD) -

(6.1)

_ log|u(®)
log [t()]
We see Spak((t)) xspar Spak((u)) = £71(0,0).
Let C be an algebraically closed perfectoid field containing Fy,, let A;ys := W(O¢) with (p, [w])-
adic topology, 0 < |w| < 1.

Definition 6.25. We define Y as Spa(Ains, Aint)\ {s} where s is the point such that |w(s)| =
1 N
o8 (), 10
log @ ()]
The Frobenius @¢ acts on YV, and k(Pc(y)) = pr(y). In particular, @ acts discontinously on
Vo,0) = 0, 0).
Let I < (0,00) be a closed interval, By := H°(k~1(I)°, Oy), where x~*(I) means the interior of
k~1(I). Tt can be proved that By is strongly noetherian, V(0,50) is an adic space. Let B :=lim By.

Given z € ), let k() € [0,00]. This defines a continuous surjective x : Y — [0, o0].

|p(s)| = 0. Then Y is analytic, and there exists  : Y — [0, 0] defined by k(z) =

Definition 6.26. The adic Fargues-Fontaine curve is X(cy := Y(0,00)/Pc-
6.4. Untilts.
Definition 6.27. An untilt of C to Q, is a pair (C#,i) where C#/Q, is a perfectoid field, and
i:C = C# is an isomorphism.
We say that Fargues-Fontaine curve carries untilts of C":

Theorem 6.28. There is a bijection between the untilts of C to Q,, modulo equivalence, to closed
mazximal ideals of B.

Proof. Given a maximal ideal m, we have untilt B/m. Conversely, if (C#,4) is an untilt, then we
have a map of multiplicative monoids

ch L&l —>Oc#

xr—xP
denoted by = — z#. This lifts to a ring homomorphism
W(OC) = Ainf - OC#
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sending [f] — f#. This extends to
W(Oc)[1/p] — C*.

There is a map W(O¢)[1/p] — By. For I large enough, this extend through Bj, and composing
with B — Bj gives a homomorphism B — C7#. ]

Recall that we have defined the adic Fargues-Fontaine curve X = y(o,oo)/dsc and B = H° (V0,0 Oy(oym))
which has an action of @¢. Let BZc=P denote the subset of elements of B consisting of those b e B
such that b = bP, we actually have a functor, as described in [FF] §10.2.1.

{Isocrystals/k} — {Vector bundles/X’}

where k = Fp.
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