Chapitre V

Systemes d’équations linéaires

1 Définitions

1.2 Systeme d’équations linéaires

Définition
Un systeme d’équations linéaires & n équations et p inconnues (x1,...,z,) peut s’écrire
a11x1 + ..+ G1pTp = b1
(S) . .
an1x1 + ... + anpTp = by

Les nombres a; ; et b; sont appelés coefficients du systeme. Ce sont des nombres réels ou complexes.

1.3 Systeme homogene associé

Définition
On appelle systéme homogéne associé au systéme (S) défini précédemment le systeme :
1121 + ...+ a1pTp = 0
(SH) :
ap1r1 + ... + apprp = 0

1.4 Systemes équivalents

Définition

Deux systemes sont équivalents si et seulement si ils ont le méme ensemble de solutions.

1.5 Systeme compatible

Définition

’Un systeme est dit compatible si et seulement si il admet au moins une solution.

Propriété

’Tout systeme homogene est compatible.

Démonstration : un systéme homogene a toujours pour solution évidente la solution nulle (0, ..., 0).
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1.6 Propriétés

Propriété 1

Soit X = (z1,...,2p) une solution du systeme (S) et Y une solution du systeme homogene associé, alors
X +Y est une solution de ().

Démonstration immédiate.

Propriété 2

L’ensemble des solutions d’'un systeme homogene a coefficients réels et a p inconnues est un sous espace
vectoriel de RP, c¢’est-a-dire que c’est un sous ensemble de RP contenant le vecteur nul (0,...,0) et stable
par combinaison linéaire.

Démonstration
On note (SH) le systeme.
(0,...,0) est une solution évidente de (SH) car il est homogene.

on note Sy, 'ensemble des solutions de (SH).

S), est stable par combinaison linéaire signifie : Soient o et 5 dans K, X = (z1,...,2p) et Y = (y1,...,yp)
dans S, alors aX + Y = (az1 + Byr, ..., 0z, + Byp) € Sh.

En effet, pour tout i € [1,n], aX + Y vérifie la i-ieme équation de (SH) car :
a;1(axy + Byr) + ... +aiplazy + Byp) = alaiiz1 + ...+ aipzp) + Blainyy + ... + aipyp) = .0+ 5.0 = 0.

Propriété 3

Si X( une solution particuliere de (S) et Sj, I'ensemble des solutions du systeme homogene associé a (5),
alors I’ensemble S des solutions de (S) est S = Xo+ S, ={Xo+Y/Y € S}

Démonstration
On note S 'ensemble des solutions de (.5).

D’apres la propriété 1, on a Xg + S, C S.
On montre que 'on a aussi Xg+ S, D S.
En effet, soit Y une solution de S alors Y — X est solution de (SH) donc Y € Xy + Sj.

Ecriture matricielle

On appelle matrice un tableau de nombres (que I'on note entre deux grandes parentheses). Les nombres
figurant dans une matrice sous appelé coefficients de la matrice.

Pour alléger I’écriture, on peut écrire le systeme

1,171 + ...+ a1pTp = b1 ailr ... Qip b1
(S) : sous la forme matricielle :  (.5)

an1x1 + ... + appr, = by 1 ... Qnp | by

A gauche du trait vertical, on ne fait figurer que les coefficients des inconnues, a droite du trait les seconds
membres. Cette écriture est trés pratique mais n’a de sens que si on respecte scrupuleusement 'ordre des
inconnues et des colonnes.
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2 Méthode du Pivot de Gauss

2.2 Systeme échelonné

Définitions : pivot, systéeme échelonné

e On appelle pivot d’une ligne le premier coefficient non nul de cette ligne.
e Un systeme est dit échelonné si et seulement si le pivot de chaque ligne est a droite (au sens strict) de
celui de la ligne précédente.

Ezemples : les pivots sont entourés.

0o (1] 2
0 0 [-2)
0 0

0

1

0
0
1) -1

ooon

x—3y+22— t = 1

Ce dernier écrit en notation classique Z ! t 4
0

Définition : inconnues principales et secondaires

Dans un systeme échelonné, on appelle inconnues principales celles dont le coefficient sur une des lignes
est un pivot, les autres inconnues sont appelées secondaires.

Exemple
{x+2y+32+2t:3
z:5

Dans ce systéme échelonné, = et z sont les inconnues principales, y et t les inconnues secondaires.

2.3 Solutions d’un systéme échelonné

Propriété : existence (compatibilité)

Un systéme échelonné admet des solutions (est compatible) si et seulement si il n’y a pas de pivot sur la
colonne des seconds membres.

Ezxplication : si il y a un pivot sur la colonne des seconds membres, l’équation correspondante est 0 = 1.

x+2y—|—3z:—1
z: 2

Ezemple de systéeme incompatible

Propriété : unicité

Un systeme échelonné compatible admet une solution unique si et seulement si il n” a pas d’inconnue
secondaire.

Ezxplication : on a un systéme triangulaire dont tous les coefficients diagonaux sont non nuls.

x +2z=0
y—z:3
2:2

Exemple
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Propriété : solutions multiples

Un systeme échelonné compatible admet des solutions multiples si et seulement si il possede au moins une
inconnue secondaire.
La dimension du sous-espace affine des solutions est égale au nombre d’inconnues secondaires.

Expression paramétrique des solutions multiples

Pour exprimer I’ensemble des solutions de maniére paramétrique :
1) On remplace toutes les inconnues secondaires par des parametres dont les valeurs sont quelconques.
2) On calcule les inconnues principales en fonction de ces parametres.

Exzemple

(T +2y+32+2t=3
(z)=2

Propriété

Si le nombre d’équations est strictement inférieur au nombre d’inconnus, le systéme homogene associé a au
moins une solution non nulle (c.a.d. il admet des solutions multiples).

Démonstration : on note n le nombre d’équations et p le nombre d’inconnues.
Si le systeme est échelonné, le systeme homogene associé a au moins la solution nulle.

De plus, on a au plus n pivots (1 par ligne non nulle) et p inconnues, si n < p, il y a plus d’inconnues que
de pivots, donc il y a des inconnues secondaires, c.a.d. que le systeme admet des solutions multiples.

Si le systeme n’est pas échelonné, par la méthode du pivot de Gauss, on peut obtenir un systéeme échelonné
équivalent a n équations et p inconnues et le raisonnement précédent peut alors s’appliquer.

2.4 Opérations élémentaires

Définition

On appelle opération élémentaire une des trois opérations suivantes :

1) Permuter deux lignes.

2) Multiplier une ligne par un scalaire non nul.

3) Ajouter a une ligne L; une autre ligne L; (j # i) multipliée un scalaire A quelconque (L; — L; + AL;).

Théoréme

’Les opérations élémentaires transforment un systéme en un systéme équivalent.

Démonstration

1) Le systéme est évidemment équivalent si on permute deux lignes.

2) Appelons (5) le systéme initial et (S”) le systéme obtenu en multipliant la ligne L; par le scalaire A # 0.
Si X = (x1,...,xp) est solution de (5), alors X vérifie la ligne L, = AL; de (S’), les autres lignes étant
identiques dans S et S, X est solution de (5”).

Si X = (z1,...,xp) est solution de (S’), alors X vérifie la ligne L; = %L; de (S) car A\ # 0, les autres
lignes étant identiques dans S’ et S, X est solution de ().
Si A est on nul, on a bien deux systemes équivalents.

3) Appelons (5) le systeme initial et (S”) le systéme dont seule la i-eme ligne est différente avec L, = L;+\L;
(j # i et A scalaire quelconque).

Si X = (z1,...,2p) est solution de (), alors X vérifie la ligne L, = L; + A\L; de (S5’), les autres lignes
étant identiques dans S et S’, X est solution de (5”).

Si X = (71,...,7p) est solution de ('), alors X vérifie aussi Lj — AL} = L; — AL; car j # i et donc la
ligne L; est inchangée dans S’. Or L, — AL; = L;, les autres lignes étant identiques dans S’ et S, X est
solution de (.5).

Si j # 4, on a bien deux systémes équivalents.
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2.5 Regroupement d’opérations élémentaires

Théoréme

On obtient un systéeme équivalent en effectuant une des trois opérations suivantes :

1) Echanger l'ordre des lignes.

2) Multiplier les lignes par des scalaires non nuls.

3) Apres avoir choisi une ligne L;, remplacer une ou plusieurs autres lignes L; (j # i) par Lj + A;L; ou
les \; sont des scalaires quelconques. Attention, il est essentiel de ne pas modifier la ligne L;.

Démonstration
Pour les opérations 1. et 2., on peut décomposer de maniere évidente ces opérations en une succession
d’opérations élémentaires, donc le systeme obtenu est équivalent.

Pour 'opérations 3., on peut aussi décomposer cette opération en une succession d’opérations élémentaires
de type 3 parce que la ligne L; est inchangée. Le systéeme obtenu est donc équivalent.

Contre exemple

r+y+z=3
Le systeme y + z = 2 admet une solution unique (z,y,2) = (1,1,1).
z=1

Si on effectue en une seule étape les opérations L1 — Ly — Ly et Lo — Lo — L3 et Ly — L3 — L1, on obtient
le systeme :

=1
y =1 ol z est une inconnue secondaire et dont ’ensemble des solutions est la droite passant par
rz+y=2
(1,1,0) et de vecteur directeur (0,0, 1).

Ces deux systéemes ne sont pas équivalents!

2.6 Méthode du Pivot de Gauss

Description

Elle consiste transformer un systeme (S) donné en un systeme échelonné (S’) équivalent a l'aide des
opérations élémentaires.

On échelonne colonne par colonne de la gauche vers la droite.

Pour chaque colonne, on annule les coefficients sous le premier pivot (en descendant la colonne) par des
opérations de type 3.

Les opérations de type 1 servent a réorganiser éventuellement le systéme pour gagner des étapes.

Les opérations de type 2 servent a ramener les pivots a 1 (simplification des calculs).

On peut en plus annuler les coefficients au dessus du pivot, ce qui évite de faire des substitutions pour
résoudre le systeme échelonné (S’).

Exemple 1
z4+y—2=0
z+5y =3
2e+y—z=1
1 —1]0
Le systeme peut s’écrire en notation matricielle : 5 0|3

2] 1 -1]1

En utilisant la méthode de Gauss, on obtient les systemes équivalents suivants :

1 —-1l0\ I, 1 -1 0\ I,
0 113 | Lo—1I4 0 ~1|-1 | —Ls
0 1/1/) Lsy—2L 0 1| 3/ Lo
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0 0] 1\ L;-1Lo 0 0] 1\ I
0 (1] -1]-1 | Lo 0 (1] -1]-1 ] Lo
0 0 7 ) Lz—4Ly 0 0 ) %

Ce systeme échelonné est compatible et n’a pas d’inconnues secondaires, il admet donc une solution unique.
On poursuit la résolution soit en continuant la méthode du pivot soit par substitution.

~

0 0|1\ I
0 0 % Lo+ L3
0 0 ) Ls
. . . 27
Le systeme admet pour solution unique (z,y, z) = (1, 5 5)

Exemple 2
T+y+3z+2=-2

2 +3y+4z+t=-1
3x+Ty+2—6t= 6

(1] 1 3 2|-2

Le systeme peut s’écrire en notation matricielle : 3 4 1|-1
71 —6| 6

En utilisant la méthode de Gauss, on obtient les systémes équivalents suivants :

(1] 1 3 2|-2\ L (1] 1 3 2][-2\ IL
0 (1] -2 -3] 3 | Ly—2L 0 (1) -2 -3] 3| Lo

0 -8 —12| 12 ) Lsz—3L 0 -2 3| 3/) %

0 5 5|5\ Li—Ly
0 (1) —2 -3| 3| Lo

0o 0 0 0| O L3 — Ly

Ce systeme échelonné est compatible et a 2 inconnues secondaires z et ¢, donc il admet des solutions

multiples, son ensemble de solutions est un espace affine de dimension 2.
Pour exprimer les solutions sous forme paramétrique, on pose A = z et u = t, les solutions vérifient

r=—-5—5\A—bu

y=3+2\+3u
z=A
t=p

L’ensemble des solutions est  {(—=5 — 5A —5u, 3+ 2A +3p, A\, 1) | A, € R}
Exemple 3

r+y—2=0 1 -11]0

x+5y—2z=3 c.a.d. en notation matricielle : 5 =2

20 —2y—2z=1 -2 —1]1
En utilisant la méthode de Gauss, on obtient les systéemes équivalents suivants :

1 -1]0\ I 1 -1] o
0 —-113 Lo — L, 0 i % Ly/4
0 1|1/ Ly—2L 0 0 0 L3+ Ly

Le systeme a un pivot sur la colonne des seconds membres donc il est incompatible.

w
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Notions élémentaires de géométrie affine

1 Généralités
1.2 Vecteurs

Vocabulaire

On désigne par € I'Espace (avec une majuscule), c.a.d. 'espace physique a trois dimensions.

Soient A, B des points de I’Espace, le vecteur 1@ est une grandeur qui mesure le déplacement de A vers
B.

Propriété

Soient A, B, C, D des points de I’Espace, xﬁ = lﬁ si et seulement si (A, B, C, D) est un parallélogramme.

Propriété

Soient A, B des points de I’Espace, E — 0 si et seulement si A et B sont confondus (A= B).

Propriété

Soient A, B des points de I’Espace, E = —371.

Relation de Chasles

Soient A, B, C, des points de ’Espace, zﬁ + B? = zﬁ

1.3 Espaces vectoriels

Définition : direction

Soit F' ’Espace, un plan, une droite ou un singleton, on note F= {ﬁ | A, B € F'}, 'ensemble des vecteurs
formés avec des points de F'.
F' est appelé direction de F'.

Remarque
La direction d’un singleton {A} o A est un point est {0}.

Propriété

Soit F' I’Espace, un plan ou une droite, F est un sous-espace vectoriel de g , C’est-a-dire que :
o Vi,7EF,i+T€F | cestlastabilité par addition.

e VAER, Vi e F , AU E F , C’est la stabilité par multiplication par un scalaire (les réels).
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Définition : dimension

e La dimension de l'espace £ et de sa direction £ est 3.
e La dimension d’un plan P et de sa direction P est 2.
e La dimension d’une droite D et de sa direction D est 1.

e La dimension d’un singleton {A} oil A est un point est 0. Sa direction {0} est aussi de dimension nulle.

Propriété

Soit F' et F' deux droites ou deux plans de £ (F et F’ sont de méme dimension).
F || F' si et seulement si ils ont la méme direction, c’est-a-dire F' = F”.

Démonstration
Supposons F || F'.

Soit ¥ € F il existe A, B € F tels que v = 1@
Soit C' € F’. On construit le parallélogramme (A, B, D,C). On a v = AB = CD et de plus D € F' car F
et F’ sont de méme dimension et paralléles.

Donc 7 € F’. 1l suit que F C F'.
On montre de méme que F' C F donc F = F'. (CQFD)
Inversement, supposons que F = EV.

Si F et F’ sont des droites, on note (i) une base de F = F".
@ est un vecteur directeur des droites F et F” donc ces droites sont paralleles. (CQFD)

Si F et F’ sont des plans, on note (%, ¥) une base de F=F.
On note A et A’ des points respectivement de F' et F, puis D,, et D), les droites de reperes respectivement
(A, @) et (A', 1), et enfin D, et D! les droites de reperes respectivement (A, ¥) et (A', 7).

On a D, || D, et D, || D, avec D, et D, sécantes et incluses dans F' et D!, et D, sécantes et incluses dans
F’ donc F et F’' sont deux plans paralleles. (CQFD)

1.4 Repéres et bases

Définition : repéres et bases en dimension 3

On appelle repere de 'espace £, un quadruplet (O, I, J, K) de points non coplanaires de &, le premier point,
(ici O), est appelé origine du repeére.

Alors, pour tout point M € &, il existe un unique triplet (z,y, z) € R3 tel que OM = ZEO—}-F yO*J}—i- 20K (*).
(x,y, z) sont appelées coordonnées de M dans le repere (O, 1, J, K).

On peut aussi définir un repere de I’Espace par la donnée d’un quadruplet (O,f7 j, E) tels que les vecteurs
i k sont linéairement 1ndependants (cf définition ci-dessous).

L égalité (*) s’écrit alors : OM = zi +yj + zk.

(z 7, k) est alors appelée base de I'espace vectoriel E.

Définition : indépendance linéaire

Soient wi, w3, ..., u,, des vecteurs de ’Espace, ces vecteurs sont dits linéairement indépendants si et
) ) ) 23] )

seulement si :

Ck1=0
Vaq,...,an €ER, aqui+ -+ apu, =0 =

a, =0
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Propriété : indépendance linéaire de deux vecteurs

Soient #, ¥ deux vecteurs de 'Espace, (@, ¥) sont linéairement indépendants si et seulement si ils ne sont
pas colinéaires.

Démonstration
On montre la contraposée : (i, ¥) ne sont pas linéairement indépendants si et seulement si ils sont colinéaires.

Soient (@, ¥) non linéairement indépendants. Alors il existe a, 8 non tous deux nuls tels que o + S0 = 0.
Supposons par exemple que ce soit # qui soit non nul, alors ¥ = —%ﬁ donc 4 et ¥ sont colinéaires. (CQFD)
Soient (u,¥) colinéaires, alors il existe k € R tel que @ = k¥ ou @ = k.

On a donc @ — kv =0 ou kit — 7 = 0.

Le couple (o, 8) = (1, —k) ou le couple (o, 8) = (k, —1) vérifie o + 87 = 0 avec (o, 8) # (0,0).

Donc @, ¥ ne sont pas linéairement indépendants. (CQFD)

Propriété : indépendance linéaire d’un vecteur

Soient % un vecteur de ’Espace, 4 est linéairement indépendant si et seulement si il n’est pas nul.

Démonstration
On montre la contraposée : @ n’est pas linéairement indépendant si et seulement si il est nul.

Si @ = 0 alors on a par exemple 1.4 = 1.0 = 0 donc @ ne vérifie pas la propriété d’indépendance linéaire.

(CQFD)

Si @ n’est pas linéairement indépendant alors il existe A # 0 tel que M@ = 0 ce qui implique @ = 0. (CQFD)

Définition : repéres et bases en dimension 2

On appelle repere d’un plan P, un triplet (O, I, J) de points non alignés de P.

Alors, pour tout point M € P, il existe un unique couple (x,y) € R? tel que O—]\Zf = x04[> + ya} ().
(x,y) sont appelées coordonnées de M dans le repere (O, 1, J).

On peut aussi définir un repere de P par la donnée d’'un triplet (O, i, j) tels que les vecteurs i, € P sont
linéairement indépendants ce qui est équivalents, pour deux vecteurs, a ;,j sont non colinéaires.
L’égalité (*) s’écrit alors : OM = zi+yj.

(Z, j) est alors appelée base de 'espace vectoriel P.

Définition : repéres et bases en dimension 1

On appelle repere d’une droite D, un couple (O, I) de points distincts de D.

Alors, pour tout point M € D, il existe un unique x € R tel que 5]\_>4 = 565_[) ().

x est appelée coordonnée de M dans le repere (O, I).

On peut aussi définir un repere de P par la donnée d’un couple (O,f) tels que le vecteur i € D est
linéairement indépendant ce qui est équivalent, pour un vecteur, a 7 non nul.

L égalité (*) s'écrit alors : OM = xi.

(Z) est alors appelée base de 'espace vectoriel D.

2 Plan affine R?

2.2 Généralités

Dans le plan affine R?, on considere les couples comme des points.
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R}

Définition et propriété : vecteurs de

Soient A = (24,ya) et B = (vp,yp) deux points de R?, on définit le vecteur E par :
AB = (v5— x4, ys — ya).

On peut alors appliquer toutes les définitions et propriétés de la section 1 concernant les plans, on obtient
donc la méme géométrie que dans un plan de I’Espace.

2.3 Sous-espaces affines de R?

Propriété

Les sous-espaces de R? sont :
e les espaces de dimension 0, c’est & dire les singletons {A} avec A € R2.
e les espaces de dimension 1, c’est a dire les droites de R2.

e le plan R? lui-méme de dimension 2.

2.4 E‘quation paramétrique d’une droite de R?

Propriété

T = Tq+ ATy

A € R) tell
yzya+>\yu( ) telle que

Toute droite de R? admet une équation paramétrique de la forme {

(@u, yu) # (0,0).
Inversement, toute partie de R? ayant une telle équation paramétrique est une droite de vecteur directeur
U = (xy, yu) passant par A = (x4, Ya)-

Démonstration : On note M = (z,y), A = (4, Ya) €t u = (24, yu) et D la droite passant par A et dirigée
par 4. Ce résultat se déduit de I’équivalence :

TR {x:xa—i-)\xu

—
< AM et @ sont colinéaires < M € D.
Y= Ya + A\Yu

2.5 Equation cartésienne d’une droite de R?

Propriété

Toute droite de R? admet une équation de la forme ax + by + ¢ = 0 avec (a, b) # (0,0).
Inversement, toute partie de R? admettant une telle équation est une droite de vecteur directeur @ = (—b, a)
passant par A = (2¢,0) si a est non nul, A = (0, 3°) sinon.

Démonstration : Soit D une droite de R2. Soit A = (z4,y,) un point de D et @ = (xy,y,) un vecteur
directeur. .

M = (z,y) € D siet seulement si AM est colinéaire a i, ¢’est-a-dire (x—z4, y—y,) est proportionnel (x4, y,,),
qui équivaut, d’apres les produits en croix a : y, (r—z4) = x4 (y—ya) ce qui s’écrit Y,z — 2,y —YuTa+Tyyq = 0.
Comme (24, y,) 7 (0,0), on a bien une équation de la forme attendue.

Inversement, soit (a,b) # (0,0) et F' la partie d’équation az + by + ¢ = 0 (1). Supposons a # 0, (z,y) est
—c—b\

solution de (1) si et seulement si il existe A tel que { i i 31\ . Il s’agit de I’équation paramétrique de la

droite passant par A = (=£,0) et de vecteur directeur (=2, 1) colinéaire & @ = (—b,a) # 0.

a
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Si a = 0, nécessairement b # 0, par le méme raisonnement on en déduit que (z,y) € F si et seulement si
il existe A € tel que (z,y) = (0, 3°) + A(1, 3*). F est donc la droite passant par A = (0, 3°) et de vecteur
directeur @ = (—b, a).

Propriété : équation cartésienne de la direction d’une droite

Soit D une droite de R? d’équation cartésienne ax + by + ¢ = 0 avec (a,b) # (0,0).
Sa direction D admet pour équation cartésienne ax + by = 0, c’est-a-dire ’équation cartésienne homogene
associée a celle de D.

Démonstration
Soit A = (xa,ya) € Det B= (zp,yg) € D.Onaazxg+bysa+c=0 (1) et arp+byp+c=0 (2).

Alors AB = (xp—xa,yp —ya) vérifie a(xp —x4) +b(yp —ya) = 0 par soustraction des égalités (2) et (1).
Donc les vecteurs de D vérifie I’équation az + by = 0.

Inversement, une fois choisi un point A = (x4,y4) € D, tout vecteur ¥ = (z,y) vérifiant ax + by = 0 peut
s’écrire U = (xp — A,y — ya) avec B = (x4 + x,ya + ).

Comme a(za + ) + b(ya +y) = (axs + bya) + (ax 4+ by) = —¢, ona B € D et donc 7 € D.

Théoréme : équations de droites paralleles

Soit D et D' deux droites de R? d’équations ax 4+ by + ¢ =0 et a’z + by + ¢’ = 0.
D|D < al —adb=0.

Démonstration : D et D" ont pour vecteur directeur respectivement @ = (—b,a) et @' = (=b,d’).

D || D' si et seulement si @ et @' sont colinéaires, c.a.d. (—=b,a) et (—b',a’) sont proportionnels, c.a.d.
—ba’ = —ab’ (produit en croix), qui s’écrit aussi ab’ — a’b = 0.

3 Espace affine R?

3.2 Généralités

Dans I’espace affine R?, on considere les triplets comme des points.

R?

Définition et propriété : vecteurs de

Soient A = (24,ya,24) et B = (2,yB, 25) deux points de R3, on définit le vecteur E par :
E: (fL"B—ﬂUA,yB—yA7 ZB_ZA)'

On peut alors appliquer toutes les définitions et propriétés de la section 1 concernant I’Espace, on obtient
donc la méme géométrie que dans 1’Espace.

3.3 Sous-espaces affines de R?

Propriété

Les sous-espaces de R3 sont :
e les espaces de dimension 0, c’est & dire les singletons {A} avec A € R3.
e les espaces de dimension 1, c’est & dire les droites de R>.
e les espaces de dimension 2, c’est a dire les plans de R3.

e l'espace R? lui-méme de dimension 3.
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3.4 Plans de R?

Propriété : équation paramétrique d’un plan de R?

T =Tq+ ATy + UTy
Ya + A\yu + 1y, de parametres

Za + )\zu + pzy

Tout plan de R? admet une équation paramétrique de la forme ¢ y
z

A€ R et ou = (xy, Yu, 24) €6 U= (Ty, Yo, 2v) sont non colinéaires.

Inversement, toute partie de R? ayant une telle équation paramétrique est un plan de repere (A, i, ).

Démonstration : méme méthode que pour les droites.

Propriété : équation cartésienne d’un plan de R3

Tout plan P de R admet une équation de la forme azx + by + cz +d = 0 avec (a,b, c) # (0,0,0).
Inversement, toute partie de R3 admettant une telle équation est un plan P dont la direction P admet pour
équation cartésienne ax + by + cz = 0, c.a.d. I’équation homogene associé a celle de P.

Démonstration

Soit P un plan de R3 et (A, i, ¥) un repere de P avec A = (24, Ya, 2a); U = (T, Yu, 2u) €t T = (Zo, Yo, 20)-
T = Tq + ATy + UTy

M= (z,y,z) € P& I\ peR, Y= Ya + A\Yu + 1Y
Z2= 2g+ A2y + 2y

T = Tq+ ATy + UTy
Donc M = (z,y,z) € P si et seulement si le systeme (S) :4 y = y, + A\yy + py d’inconnues A et p admet
Z2= 2g+ Azy + 2y
au moins une solution.
On échelonne (S) par la méthode de Gauss. Il existe au moins une composante de @ non nulle car @ # 0.
Supposons que ce soit xy,.

TyA+ Tt = T — T4 L4
(S) ~ xuyu)‘ + TyYo b = xu(@/ - ya) quQ
Ty 2y + Tyzppt = Ty (2 — 24) TuLl3
Ty + Typ = T — T, Ly
e (xuyv - xvyu)ﬂ = $u(y - ya) - yu(x - ma) Ly — yuln
(Tuzy — Tozu)pt = Ty (2 — 24) — 2u(T — T4) L3 — 2,11

Ce systeme est compatible si et seulement si les deux derniéres équations sont proportionnelles, c.a.d. avec
les produits en croix :

(xuyv - xvyu) (xu(z - Za) - Zu(x - $a)> = (xuzv - xvzu) (xu(y - ya) - yu(x - xa)) (1)
(1) & (Wuzo — Yozu)Tu(® — Ta) — (Tuze — Tozu)Tu(Y — Ya) + (TuYo — ToYu)Tu(z — 24) = 0
(1) & (Yuzo — Yozu) (@ — 24) — (Tuze — To2u) (Y — Ya) + (TulYp — Toyu)(z — 24) =0 car x, # 0.

a4 = Yu2Zy — Yviu

b= —
Finalement (1) s’écrit ax+by+cz+d = 0 avec Tufy T ToZu
C=TylYv — TolYu
d= *l‘a(yuzv - yvzu) + ya(xuzv - xvzu) - Za(xuyv - -Tvyu)

De plus, si on avait (a,b,c) = (0,0,0), 4 et ¥ seraient colinéaires (produits en croix) ce qui est contradictoire
avec (A, U, V) est un repere de P.

Conclusion : P admet une équation de la forme az + by + cz + d = 0 avec (a, b, c) # (0,0,0).

Inversement, soit F' une partie de R? qui admet une équation de la forme ax + by + cz +d = 0 avec a, b et
¢ non tous nuls.

Supposons par exemple que a # 0.
M = (z,y, z) GF(:)ax+by+cz+d:O<:)a::—gy—Ez—d.

a a
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On obtient donc Pexpression paramétrique F' = {(—¢ — 2\ — S A ) | A e R}

a a
On pose A = (_Td,O,O), U= (—g, 1,0) et ¥ = (—%,0,1).
U et U ne sont pas colinéaires (composantes non proportionnelles par les produits en croix) donc F est un
plan de repere (a, u, V).
—
Enfin, soient M = (z,y,2) et M’ = (2/,y/,2') des points de F;, MM' = (x — a',y — ¢,z — 2') vérifie
a(z — ')+ b(y — y') + c(z — 2') = 0 donc la direction F de F admet pour équation az + by + cz = 0.

Conclusion : L’ensemble d’équation az +by+cz+d = 0 avec (a, b, c) # (0,0,0) est un plan dont la direction
a pour équation ax + by + cz = 0.

Théoreme : équations cartésienne de plans paralleles

Soit P et P’ des plans de R? d’équations ax + by +cz+d=0et d/z +by+cz+d =0.
P || P < (a,b,c) et (a/,b, ) sont proportionnels.

Démonstration :

Les directions de P et P’ ont pour équations ax + by + cz =0 et 'z + by + 2 = 0.

Donc P || P’ si et seulement si ils ont la méme direction, autrement dit az+by+cz = 0 et d’z+b'y+c'z2 =0
sont équivalentes, c’est-a-dire les coefficients de ces deux équations sont proportionnels. (CQFD)

3.5 Droites de R3

Propriété : équation paramétrique d’une droite de R?

T = Tq+ ATy
Toute droite de R? admet une équation paramétrique de la forme { y = y, + Ay, de paramétre A € R et
2= Zg + A2y
ot (Zy, Yu, 2u) # (0,0,0).
Inversement, toute partie de R? ayant une telle équation paramétrique est une droite de vecteur directeur
U = (T, Yu, 2u) Passant par A = (g, Ya, 2a)-

Démonstration : identique & celle dans R?.

Propriété : équation cartésienne d’une droite de R?

ar+by+cz+d=0

dr+by+cdz+d =0 " (a,5,¢)

Toute droite de R? admet une équation cartésienne de la forme (S) :{

et (a/,, ") non proportionnels.
Inversement, toute partie de R admettant une telle équation est une droite D dont la direction D admet
pour équation le systeme homogene associé a (S).

Démonstration : Soit D une droite de R3. Soit A = (24, Y4, 24) un point de D et @ = (2, Yu, 2,) Un vecteur
directeur. (xy, Yu, zu) 7 (0,0,0), supposons par exemple que z,, # 0.
M = (z,y,z) € D si et seulement si AM est colinéaire & i,
c’est-a-dire (z — g,y — Ya, 2 — 2q) est proportionnel (z, Yy, 2u),
qui équivaut, d’apres les produits en croix a : { Yu(® = Za) = Tuly = Ya)
2u(T — ) = Tu(z — 24)
d {ywr — Ty + TuYa — YuTa =0
c.a.d. )
Zul — XyZ + TyZa — 2uTq = 0
Comme x, # 0, (Yu, —%4,0) (24,0, —x,) ne sont pas proportionnels, on a bien une équation de la forme
attendue.

Inversement, si une partie F' admet une telle équation, FF = PN P’ ou P et P’ sont les plans d’équations
ax +by+cz+d=0et dx+by+z+d =0. Comme (a,b,c) et (a’,b, ) ne sont pas proportionnels, P
et P’ ne sont pas paralleles donc leur intersection I est une droite.
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