
Chapitre V

Systèmes d’équations linéaires

1 Définitions

1.2 Système d’équations linéaires

Définition
Un système d’équations linéaires à n équations et p inconnues (x1, . . . , xp) peut s’écrire

(S)

8
><

>:

a1,1 x1 + . . . + a1,p xp = b1
...

...
...

an,1 x1 + . . . + an,p xp = bn

Les nombres ai,j et bi sont appelés coe�cients du système. Ce sont des nombres réels ou complexes.

1.3 Système homogène associé

Définition
On appelle système homogène associé au système (S) défini précédemment le système :

(SH)

8
><

>:

a1,1 x1 + . . . + a1,p xp = 0
...

...
...

an,1 x1 + . . . + an,p xp = 0

1.4 Systèmes équivalents

Définition
Deux systèmes sont équivalents si et seulement si ils ont le même ensemble de solutions.

1.5 Système compatible

Définition
Un système est dit compatible si et seulement si il admet au moins une solution.

Propriété
Tout système homogène est compatible.

Démonstration : un système homogène a toujours pour solution évidente la solution nulle (0, . . . , 0).

1



Chapitre V : Systèmes d’équations linéaires

1.6 Propriétés

Propriété 1

Soit X = (x1, . . . , xp) une solution du système (S) et Y une solution du système homogène associé, alors
X + Y est une solution de (S).

Démonstration immédiate.

Propriété 2
L’ensemble des solutions d’un système homogène à coe�cients réels et à p inconnues est un sous espace
vectoriel de Rp, c’est-à-dire que c’est un sous ensemble de Rp contenant le vecteur nul (0, . . . , 0) et stable
par combinaison linéaire.

Démonstration
On note (SH) le système.
(0, . . . , 0) est une solution évidente de (SH) car il est homogène.

on note Sh l’ensemble des solutions de (SH).

Sh est stable par combinaison linéaire signifie : Soient ↵ et � dans K, X = (x1, . . . , xp) et Y = (y1, . . . , yp)
dans Sh alors ↵X + �Y = (↵x1 + �y1, . . . ,↵xp + �yp) 2 Sh.

En e↵et, pour tout i 2 [1, n], ↵X + �Y vérifie la i-ième équation de (SH) car :
ai,1(↵x1 + �y1) + . . .+ ai,p(↵xp + �yp) = ↵(ai,1x1 + . . .+ ai,pxp) + �(ai,1y1 + . . .+ ai,pyp) = ↵.0 + �.0 = 0.

Propriété 3

Si X0 une solution particulière de (S) et Sh l’ensemble des solutions du système homogène associé à (S),
alors l’ensemble S des solutions de (S) est S = X0 + Sh = {X0 + Y/Y 2 Sh}.

Démonstration
On note S l’ensemble des solutions de (S).

D’après la propriété 1, on a X0 + Sh ⇢ S.
On montre que l’on a aussi X0 + Sh � S.
En e↵et, soit Y une solution de S alors Y �X0 est solution de (SH) donc Y 2 X0 + Sh.

Ecriture matricielle
On appelle matrice un tableau de nombres (que l’on note entre deux grandes parenthèses). Les nombres
figurant dans une matrice sous appelé coe�cients de la matrice.

Pour alléger l’écriture, on peut écrire le système

(S)

8
><

>:

a1,1x1 + . . . + a1,pxp = b1
...

...
...

an,1x1 + . . . + an,pxp = bn

sous la forme matricielle : (S)

0

B@
a1,1 . . . a1,p b1

...
...

...
an,1 . . . an,p bn

1

CA

A gauche du trait vertical, on ne fait figurer que les coe�cients des inconnues, à droite du trait les seconds
membres. Cette écriture est très pratique mais n’a de sens que si on respecte scrupuleusement l’ordre des
inconnues et des colonnes.
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Chapitre V : Systèmes d’équations linéaires

2 Méthode du Pivot de Gauss

2.2 Système échelonné

Définitions : pivot, système échelonné
• On appelle pivot d’une ligne le premier coe�cient non nul de cette ligne.
• Un système est dit échelonné si et seulement si le pivot de chaque ligne est à droite (au sens strict) de
celui de la ligne précédente.

Exemples : les pivots sont entourés.
0

@
0

⇤⇥ ��1 2 0 1
0 0

⇤⇥ ��-2 0 2

0 0 0
⇤⇥ ��-1 �1

1

A

0

BBB@

⇤⇥ ��3 �3 2 �1 1
0 0

⇤⇥ ��2 3 2

0 0 0
⇤⇥ ��1 �4

0 0 0 0
⇤⇥ ��1

1

CCCA

Ce dernier écrit en notation classique

8
>>><

>>>:

⇤⇥ ��3 x � 3y + 2z � t = 1⇤⇥ ��2 z + 3t = 2⇤⇥ ��1 t = �4

0 =
⇤⇥ ��1

Définition : inconnues principales et secondaires
Dans un système échelonné, on appelle inconnues principales celles dont le coe�cient sur une des lignes
est un pivot, les autres inconnues sont appelées secondaires.

Exemple ⇢ ⇤⇥ ��-1 x+ 2y + 3z + 2t = 3⇤⇥ ��2 z = 5

Dans ce système échelonné, x et z sont les inconnues principales, y et t les inconnues secondaires.

2.3 Solutions d’un système échelonné

Propriété : existence (compatibilité)

Un système échelonné admet des solutions (est compatible) si et seulement si il n’y a pas de pivot sur la
colonne des seconds membres.

Explication : si il y a un pivot sur la colonne des seconds membres, l’équation correspondante est 0 = 1.

Exemple de système incompatible 8
<

:

⇤⇥ ��1 x+ 2y + 3z = �1⇤⇥ ��1 z = 2
0 =

⇤⇥ ��1

Propriété : unicité
Un système échelonné compatible admet une solution unique si et seulement si il n’ a pas d’inconnue
secondaire.

Explication : on a un système triangulaire dont tous les coe�cients diagonaux sont non nuls.

Exemple 8
<

:

⇤⇥ ��1 x + 2z = 0⇤⇥ ��1 y � z = 3⇤⇥ ��1 z = 2
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Chapitre V : Systèmes d’équations linéaires

Propriété : solutions multiples
Un système échelonné compatible admet des solutions multiples si et seulement si il possède au moins une
inconnue secondaire.
La dimension du sous-espace a�ne des solutions est égale au nombre d’inconnues secondaires.

Expression paramétrique des solutions multiples
Pour exprimer l’ensemble des solutions de manière paramétrique :
1) On remplace toutes les inconnues secondaires par des paramètres dont les valeurs sont quelconques.
2) On calcule les inconnues principales en fonction de ces paramètres.

Exemple ⇢ ⇤⇥ ��1 x+ 2y + 3z + 2t = 3⇤⇥ ��z = 2

Propriété
Si le nombre d’équations est strictement inférieur au nombre d’inconnus, le système homogène associé a au
moins une solution non nulle (c.a.d. il admet des solutions multiples).

Démonstration : on note n le nombre d’équations et p le nombre d’inconnues.

Si le système est échelonné, le système homogène associé a au moins la solution nulle.

De plus, on a au plus n pivots (1 par ligne non nulle) et p inconnues, si n < p, il y a plus d’inconnues que
de pivots, donc il y a des inconnues secondaires, c.a.d. que le système admet des solutions multiples.

Si le système n’est pas échelonné, par la méthode du pivot de Gauss, on peut obtenir un système échelonné
équivalent à n équations et p inconnues et le raisonnement précédent peut alors s’appliquer.

2.4 Opérations élémentaires

Définition
On appelle opération élémentaire une des trois opérations suivantes :
1) Permuter deux lignes.
2) Multiplier une ligne par un scalaire non nul.
3) Ajouter à une ligne Li une autre ligne Lj (j 6= i) multipliée un scalaire � quelconque (Li ! Li + �Lj).

Théorème
Les opérations élémentaires transforment un système en un système équivalent.

Démonstration
1) Le système est évidemment équivalent si on permute deux lignes.
2) Appelons (S) le système initial et (S0) le système obtenu en multipliant la ligne Li par le scalaire � 6= 0.

Si X = (x1, . . . , xp) est solution de (S), alors X vérifie la ligne L
0
i = �Li de (S0), les autres lignes étant

identiques dans S et S0, X est solution de (S0).
Si X = (x1, . . . , xp) est solution de (S0), alors X vérifie la ligne Li =

1
�L

0
i de (S) car � 6= 0, les autres

lignes étant identiques dans S0 et S, X est solution de (S).
Si � est on nul, on a bien deux systèmes équivalents.

3) Appelons (S) le système initial et (S0) le système dont seule la i-ème ligne est di↵érente avec L0
i = Li+�Lj

(j 6= i et � scalaire quelconque).
Si X = (x1, . . . , xp) est solution de (S), alors X vérifie la ligne L

0
i = Li + �Lj de (S0), les autres lignes

étant identiques dans S et S0, X est solution de (S0).
Si X = (x1, . . . , xp) est solution de (S0), alors X vérifie aussi L0

i � �L
0
j = L

0
i � �Lj car j 6= i et donc la

ligne Lj est inchangée dans S0. Or L0
i � �Lj = Li, les autres lignes étant identiques dans S0 et S, X est

solution de (S).
Si j 6= i, on a bien deux systèmes équivalents.
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Chapitre V : Systèmes d’équations linéaires

2.5 Regroupement d’opérations élémentaires

Théorème
On obtient un système équivalent en e↵ectuant une des trois opérations suivantes :
1) Echanger l’ordre des lignes.
2) Multiplier les lignes par des scalaires non nuls.
3) Après avoir choisi une ligne Li, remplacer une ou plusieurs autres lignes Lj (j 6= i) par Lj + �jLi où

les �j sont des scalaires quelconques. Attention, il est essentiel de ne pas modifier la ligne Li.

Démonstration
Pour les opérations 1. et 2., on peut décomposer de manière évidente ces opérations en une succession
d’opérations élémentaires, donc le système obtenu est équivalent.

Pour l’opérations 3., on peut aussi décomposer cette opération en une succession d’opérations élémentaires
de type 3 parce que la ligne Li est inchangée. Le système obtenu est donc équivalent.

Contre exemple

Le système

8
<

:

x+ y + z = 3
y + z = 2

z = 1
admet une solution unique (x, y, z) = (1, 1, 1).

Si on e↵ectue en une seule étape les opérations L1 ! L1�L2 et L2 ! L2�L3 et L3 ! L3�L1, on obtient
le système :
8
<

:

x = 1
y = 1

x+ y = 2
où z est une inconnue secondaire et dont l’ensemble des solutions est la droite passant par

(1, 1, 0) et de vecteur directeur (0, 0, 1).

Ces deux systèmes ne sont pas équivalents !

2.6 Méthode du Pivot de Gauss

Description

Elle consiste transformer un système (S) donné en un système échelonné (S’) équivalent à l’aide des
opérations élémentaires.
On échelonne colonne par colonne de la gauche vers la droite.
Pour chaque colonne, on annule les coe�cients sous le premier pivot (en descendant la colonne) par des
opérations de type 3.
Les opérations de type 1 servent à réorganiser éventuellement le système pour gagner des étapes.
Les opérations de type 2 servent à ramener les pivots à 1 (simplification des calculs).
On peut en plus annuler les coe�cients au dessus du pivot, ce qui évite de faire des substitutions pour
résoudre le système échelonné (S’).

Exemple 1 8
<

:

x+ y � z = 0
x+ 5y = 3

2x+ y � z = 1

Le système peut s’écrire en notation matricielle :

0

@

⇤⇥ ��1 1 �1 0⇤⇥ ��1 5 0 3⇤⇥ ��2 1 �1 1

1

A

En utilisant la méthode de Gauss, on obtient les systèmes équivalents suivants :

0

@

⇤⇥ ��1 1 �1 0
0

⇤⇥ ��4 1 3

0
⇤⇥ ��-1 1 1

1

A
L1

L2 � L1

L3 � 2L1

0

@

⇤⇥ ��1 1 �1 0
0

⇤⇥ ��1 �1 �1

0
⇤⇥ ��4 1 3

1

A
L1

�L3

L2

5



Chapitre V : Systèmes d’équations linéaires

0

@

⇤⇥ ��1 0 0 1

0
⇤⇥ ��1 �1 �1

0 0
⇤⇥ ��5 7

1

A
L1 � L2

L2

L3 � 4L2

0

@

⇤⇥ ��1 0 0 1

0
⇤⇥ ��1 �1 �1

0 0
⇤⇥ ��1 7

5

1

A
L1

L2
L3
5

Ce système échelonné est compatible et n’a pas d’inconnues secondaires, il admet donc une solution unique.
On poursuit la résolution soit en continuant la méthode du pivot soit par substitution.

0

@

⇤⇥ ��1 0 0 1
0

⇤⇥ ��1 0 2
5

0 0
⇤⇥ ��1 7

5

1

A
L1

L2 + L3

L3

Le système admet pour solution unique (x, y, z) = (1,
2

5
,
7

5
).

Exemple 2 8
<

:

x+ y + 3z + 2t = �2
2x+ 3y + 4z + t = �1
3x+ 7y + z � 6t = 6

Le système peut s’écrire en notation matricielle :

0

@

⇤⇥ ��1 1 3 2 �2⇤⇥ ��2 3 4 1 �1⇤⇥ ��3 7 1 �6 6

1

A

En utilisant la méthode de Gauss, on obtient les systèmes équivalents suivants :

0

@

⇤⇥ ��1 1 3 2 �2

0
⇤⇥ ��1 �2 �3 3

0
⇤⇥ ��4 �8 �12 12

1

A
L1

L2 � 2L1

L3 � 3L1

0

@

⇤⇥ ��1 1 3 2 �2

0
⇤⇥ ��1 �2 �3 3

0
⇤⇥ ��1 �2 �3 3

1

A
L1

L2
L3
4

0

@

⇤⇥ ��1 0 5 5 �5
0

⇤⇥ ��1 �2 �3 3
0 0 0 0 0

1

A
L1 � L2

L2

L3 � L2

Ce système échelonné est compatible et a 2 inconnues secondaires z et t, donc il admet des solutions
multiples, son ensemble de solutions est un espace a�ne de dimension 2.
Pour exprimer les solutions sous forme paramétrique, on pose � = z et µ = t, les solutions vérifient

8
>><

>>:

x = �5� 5�� 5µ
y = 3 + 2�+ 3µ
z = �

t = µ

L’ensemble des solutions est {(�5� 5�� 5µ, 3 + 2�+ 3µ,�, µ) | �, µ 2 R}.
Exemple 3

8
<

:

x+ y � z = 0
x+ 5y � 2z = 3
2x� 2y � z = 1

c.a.d. en notation matricielle :

0

@

⇤⇥ ��1 1 �1 0⇤⇥ ��1 5 �2 3⇤⇥ ��2 �2 �1 1

1

A

En utilisant la méthode de Gauss, on obtient les systèmes équivalents suivants :

0

@

⇤⇥ ��1 1 �1 0
0

⇤⇥ ��4 �1 3

0
⇤⇥ ��-4 1 1

1

A
L1

L2 � L1

L3 � 2L1

0

@

⇤⇥ ��1 1 �1 0
0

⇤⇥ ��1 1
4

3
4

0 0 0
⇤⇥ ��4

1

A
L1

L2/4
L3 + L2

Le système a un pivot sur la colonne des seconds membres donc il est incompatible.
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Chapitre VI

Notions élémentaires de géométrie a�ne

1 Généralités

1.2 Vecteurs

Vocabulaire
On désigne par E l’Espace (avec une majuscule), c.a.d. l’espace physique à trois dimensions.

Soient A, B des points de l’Espace, le vecteur
��!
AB est une grandeur qui mesure le déplacement de A vers

B.

Propriété

Soient A, B, C, D des points de l’Espace,
��!
AB =

��!
DC si et seulement si (A,B,C,D) est un parallélogramme.

Propriété

Soient A, B des points de l’Espace,
��!
AB = ~0 si et seulement si A et B sont confondus (A = B).

Propriété

Soient A, B des points de l’Espace,
��!
AB = ���!

BA.

Relation de Chasles

Soient A, B, C, des points de l’Espace,
��!
AB +

��!
BC =

�!
AC.

1.3 Espaces vectoriels

Définition : direction

Soit F l’Espace, un plan, une droite ou un singleton, on note ~F = {��!AB |A,B 2 F}, l’ensemble des vecteurs

formés avec des points de F .

~F est appelé direction de F .

Remarque
La direction d’un singleton {A} où A est un point est {~0}.
Propriété

Soit F l’Espace, un plan ou une droite, ~F est un sous-espace vectoriel de ~E , c’est-à-dire que :

• 8~u,~v 2 ~F , ~u+ ~v 2 ~F , c’est la stabilité par addition.

• 8� 2 R, 8~u 2 ~F , �~u 2 ~F , c’est la stabilité par multiplication par un scalaire (les réels).

1



Chapitre VI : Notions élémentaires de géométrie a�ne

Définition : dimension

• La dimension de l’espace E et de sa direction ~E est 3.

• La dimension d’un plan P et de sa direction ~P est 2.

• La dimension d’une droite D et de sa direction ~D est 1.

• La dimension d’un singleton {A} où A est un point est 0. Sa direction {~0} est aussi de dimension nulle.

Propriété

Soit F et F
0
deux droites ou deux plans de E (F et F

0
sont de même dimension).

F k F
0
si et seulement si ils ont la même direction, c’est-à-dire ~F = ~F

0
.

Démonstration
Supposons F k F

0
.

Soit ~v 2 ~F , il existe A,B 2 F tels que ~v =
��!
AB.

Soit C 2 F
0
. On construit le parallélogramme (A,B,D,C). On a ~v =

��!
AB =

��!
CD et de plus D 2 F

0
car F

et F
0
sont de même dimension et parallèles.

Donc ~v 2 ~F
0
. Il suit que ~F ⇢ ~F

0
.

On montre de même que ~F
0 ⇢ ~F donc ~F = ~F

0
. (CQFD)

Inversement, supposons que ~F = ~F
0
.

Si F et F
0
sont des droites, on note (~u) une base de ~F = ~F

0
.

~u est un vecteur directeur des droites F et F
0
donc ces droites sont parallèles. (CQFD)

Si F et F
0
sont des plans, on note (~u,~v) une base de ~F = ~F

0
.

On note A et A
0
des points respectivement de F et F

0
, puis Du et D

0
u les droites de repères respectivement

(A, ~u) et (A
0
, ~u), et enfin Dv et D

0
v les droites de repères respectivement (A,~v) et (A

0
,~v).

On a Du k D
0
u et Dv k D

0
v avec Du et Dv sécantes et incluses dans F et D

0
u et D

0
v sécantes et incluses dans

F
0
donc F et F

0
sont deux plans parallèles. (CQFD)

1.4 Repères et bases

Définition : repères et bases en dimension 3

On appelle repère de l’espace E , un quadruplet (O, I, J,K) de points non coplanaires de E , le premier point,

(ici O), est appelé origine du repère.

Alors, pour tout point M 2 E , il existe un unique triplet (x, y, z) 2 R3
tel que

��!
OM = x

�!
OI + y

�!
OJ + z

��!
OK (*).

(x, y, z) sont appelées coordonnées de M dans le repère (O, I, J,K).

On peut aussi définir un repère de l’Espace par la donnée d’un quadruplet (O,~i,~j,~k) tels que les vecteurs

~i,~j,~k sont linéairement indépendants (cf. définition ci-dessous).

L’égalité (*) s’écrit alors :
��!
OM = x~i+ y~j + z~k.

(~i,~j,~k) est alors appelée base de l’espace vectoriel ~E .

Définition : indépendance linéaire
Soient ~u1, ~u2, . . ., ~up, des vecteurs de l’Espace, ces vecteurs sont dits linéairement indépendants si et

seulement si :

8↵1, . . . ,↵n 2 R, ↵1u1 + · · ·+ ↵nun = ~0 )

8
>><

>>:

↵1 = 0

.

.

.

↵n = 0

2



Chapitre VI : Notions élémentaires de géométrie a�ne

Propriété : indépendance linéaire de deux vecteurs

Soient ~u, ~v deux vecteurs de l’Espace, (~u,~v) sont linéairement indépendants si et seulement si ils ne sont

pas colinéaires.

Démonstration
On montre la contraposée : (~u,~v) ne sont pas linéairement indépendants si et seulement si ils sont colinéaires.

Soient (~u,~v) non linéairement indépendants. Alors il existe ↵,� non tous deux nuls tels que ↵~u+ �~v = ~0.

Supposons par exemple que ce soit � qui soit non nul, alors ~v = �↵
�~u donc ~u et ~v sont colinéaires. (CQFD)

Soient (~u,~v) colinéaires, alors il existe k 2 R tel que ~u = k~v ou ~v = k~u.

On a donc ~u� k~v = ~0 ou k~u� ~v = ~0.

Le couple (↵,�) = (1,�k) ou le couple (↵,�) = (k,�1) vérifie ↵~u+ �~v = ~0 avec (↵,�) 6= (0, 0).

Donc ~u,~v ne sont pas linéairement indépendants. (CQFD)

Propriété : indépendance linéaire d’un vecteur
Soient ~u un vecteur de l’Espace, ~u est linéairement indépendant si et seulement si il n’est pas nul.

Démonstration
On montre la contraposée : ~u n’est pas linéairement indépendant si et seulement si il est nul.

Si ~u = ~0 alors on a par exemple 1.~u = 1.~0 = ~0 donc ~u ne vérifie pas la propriété d’indépendance linéaire.

(CQFD)

Si ~u n’est pas linéairement indépendant alors il existe � 6= 0 tel que �~u = ~0 ce qui implique ~u = 0. (CQFD)

Définition : repères et bases en dimension 2

On appelle repère d’un plan P , un triplet (O, I, J) de points non alignés de P .

Alors, pour tout point M 2 P , il existe un unique couple (x, y) 2 R2
tel que

��!
OM = x

�!
OI + y

�!
OJ (*).

(x, y) sont appelées coordonnées de M dans le repère (O, I, J).

On peut aussi définir un repère de P par la donnée d’un triplet (O,~i,~j) tels que les vecteurs ~i,~j 2 ~P sont

linéairement indépendants ce qui est équivalents, pour deux vecteurs, à ~i,~j sont non colinéaires.

L’égalité (*) s’écrit alors :
��!
OM = x~i+ y~j.

(~i,~j) est alors appelée base de l’espace vectoriel ~P .

Définition : repères et bases en dimension 1

On appelle repère d’une droite D, un couple (O, I) de points distincts de D.

Alors, pour tout point M 2 D, il existe un unique x 2 R tel que
��!
OM = x

�!
OI (*).

x est appelée coordonnée de M dans le repère (O, I).

On peut aussi définir un repère de P par la donnée d’un couple (O,~i) tels que le vecteur ~i 2 ~D est

linéairement indépendant ce qui est équivalent, pour un vecteur, à ~i non nul.

L’égalité (*) s’écrit alors :
��!
OM = x~i.

(~i) est alors appelée base de l’espace vectoriel ~D.

2 Plan a�ne R2

2.2 Généralités

Dans le plan a�ne R2
, on considère les couples comme des points.
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Chapitre VI : Notions élémentaires de géométrie a�ne

Définition et propriété : vecteurs de
�!
R2

Soient A = (xA, yA) et B = (xB, yB) deux points de R2
, on définit le vecteur

��!
AB par :

��!
AB = (xB � xA , yB � yA).

On peut alors appliquer toutes les définitions et propriétés de la section 1 concernant les plans, on obtient

donc la même géométrie que dans un plan de l’Espace.

2.3 Sous-espaces a�nes de R2

Propriété

Les sous-espaces de R2
sont :

• les espaces de dimension 0, c’est à dire les singletons {A} avec A 2 R2
.

• les espaces de dimension 1, c’est à dire les droites de R2
.

• le plan R2
lui-même de dimension 2.

2.4 Équation paramétrique d’une droite de R2

Propriété

Toute droite de R2
admet une équation paramétrique de la forme

⇢
x = xa + �xu

y = ya + �yu
(� 2 R) telle que

(xu, yu) 6= (0, 0).

Inversement, toute partie de R2
ayant une telle équation paramétrique est une droite de vecteur directeur

~u = (xu, yu) passant par A = (xa, ya).

Démonstration : On note M = (x, y), A = (xa, ya) et u = (xu, yu) et D la droite passant par A et dirigée

par ~u. Ce résultat se déduit de l’équivalence :

9� 2 R,
⇢
x = xa + �xu

y = ya + �yu
, ��!

AM et ~u sont colinéaires , M 2 D.

2.5 Équation cartésienne d’une droite de R2

Propriété

Toute droite de R2
admet une équation de la forme ax+ by + c = 0 avec (a, b) 6= (0, 0).

Inversement, toute partie de R2
admettant une telle équation est une droite de vecteur directeur ~u = (�b, a)

passant par A = (
�c
a , 0) si a est non nul, A = (0,

�c
b ) sinon.

Démonstration : Soit D une droite de R2
. Soit A = (xa, ya) un point de D et ~u = (xu, yu) un vecteur

directeur.

M = (x, y) 2 D si et seulement si
��!
AM est colinéaire à ~u, c’est-à-dire (x�xa, y�ya) est proportionnel (xu, yu),

qui équivaut, d’après les produits en croix à : yu(x�xa) = xu(y�ya) ce qui s’écrit yux�xuy�yuxa+xuya = 0.

Comme (xu, yu) 6= (0, 0), on a bien une équation de la forme attendue.

Inversement, soit (a, b) 6= (0, 0) et F la partie d’équation ax + by + c = 0 (1). Supposons a 6= 0, (x, y) est

solution de (1) si et seulement si il existe � tel que

⇢
x =

�c�b�
a

y = �
. Il s’agit de l’équation paramétrique de la

droite passant par A = (
�c
a , 0) et de vecteur directeur (

�b
a , 1) colinéaire à ~u = (�b, a) 6= 0.

4



Chapitre VI : Notions élémentaires de géométrie a�ne

Si a = 0, nécessairement b 6= 0, par le même raisonnement on en déduit que (x, y) 2 F si et seulement si

il existe � 2 tel que (x, y) = (0,
�c
b ) + �(1,

�a
b ). F est donc la droite passant par A = (0,

�c
b ) et de vecteur

directeur ~u = (�b, a).

Propriété : équation cartésienne de la direction d’une droite

Soit D une droite de R2
d’équation cartésienne ax+ by + c = 0 avec (a, b) 6= (0, 0).

Sa direction ~D admet pour équation cartésienne ax+ by = 0, c’est-à-dire l’équation cartésienne homogène

associée à celle de D.

Démonstration
Soit A = (xA, yA) 2 D et B = (xB, yB) 2 D. On a axA + byA + c = 0 (1) et axB + byB + c = 0 (2).

Alors
��!
AB = (xB �xA, yB � yA) vérifie a(xB �xA)+ b(yB � yA) = 0 par soustraction des égalités (2) et (1).

Donc les vecteurs de ~D vérifie l’équation ax+ by = 0.

Inversement, une fois choisi un point A = (xA, yA) 2 D, tout vecteur ~v = (x, y) vérifiant ax+ by = 0 peut

s’écrire ~v = (xB � xA, yB � yA) avec B = (xA + x, yA + y).

Comme a(xA + x) + b(yA + y) = (axA + byA) + (ax+ by) = �c, on a B 2 D et donc ~v 2 ~D.

Théorème : équations de droites parallèles

Soit D et D
0
deux droites de R2

d’équations ax+ by + c = 0 et a
0
x+ b

0
y + c

0
= 0.

D k D
0 , ab

0 � a
0
b = 0.

Démonstration : D et D
0
ont pour vecteur directeur respectivement ~u = (�b, a) et ~u

0
= (�b

0
, a

0
).

D k D
0
si et seulement si ~u et ~u

0
sont colinéaires, c.a.d. (�b, a) et (�b

0
, a

0
) sont proportionnels, c.a.d.

�ba
0
= �ab

0
(produit en croix), qui s’écrit aussi ab

0 � a
0
b = 0.

3 Espace a�ne R3

3.2 Généralités

Dans l’espace a�ne R3
, on considère les triplets comme des points.

Définition et propriété : vecteurs de
�!
R2

Soient A = (xA, yA, zA) et B = (xB, yB, zB) deux points de R3
, on définit le vecteur

��!
AB par :

��!
AB = (xB � xA , yB � yA , zB � zA).

On peut alors appliquer toutes les définitions et propriétés de la section 1 concernant l’Espace, on obtient

donc la même géométrie que dans l’Espace.

3.3 Sous-espaces a�nes de R3

Propriété

Les sous-espaces de R3
sont :

• les espaces de dimension 0, c’est à dire les singletons {A} avec A 2 R3
.

• les espaces de dimension 1, c’est à dire les droites de R3
.

• les espaces de dimension 2, c’est à dire les plans de R3
.

• l’espace R3
lui-même de dimension 3.
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Chapitre VI : Notions élémentaires de géométrie a�ne

3.4 Plans de R3

Propriété : équation paramétrique d’un plan de R3

Tout plan de R3
admet une équation paramétrique de la forme

8
<

:

x = xa + �xu + µxv

y = ya + �yu + µyv

z = za + �zu + µzv

de paramètres

�, µ 2 R et où ~u = (xu, yu, zu) et ~v = (xv, yv, zv) sont non colinéaires.

Inversement, toute partie de R3
ayant une telle équation paramétrique est un plan de repère (A, ~u,~v).

Démonstration : même méthode que pour les droites.

Propriété : équation cartésienne d’un plan de R3

Tout plan P de R3
admet une équation de la forme ax+ by + cz + d = 0 avec (a, b, c) 6= (0, 0, 0).

Inversement, toute partie de R3
admettant une telle équation est un plan P dont la direction ~P admet pour

équation cartésienne ax+ by + cz = 0, c.a.d. l’équation homogène associé à celle de P .

Démonstration
Soit P un plan de R3

et (A, ~u,~v) un repère de P avec A = (xa, ya, za), ~u = (xu, yu, zu) et ~v = (xv, yv, zv).

M = (x, y, z) 2 P , 9�, µ 2 R,

8
<

:

x = xa + �xu + µxv

y = ya + �yu + µyv

z = za + �zu + µzv

Donc M = (x, y, z) 2 P si et seulement si le système (S) :

8
<

:

x = xa + �xu + µxv

y = ya + �yu + µyv

z = za + �zu + µzv

d’inconnues � et µ admet

au moins une solution.

On échelonne (S) par la méthode de Gauss. Il existe au moins une composante de ~u non nulle car ~u 6= ~0.

Supposons que ce soit xu.

(S) ,

8
<

:

xu�+ xvµ = x� xa

xuyu�+ xuyvµ = xu(y � ya)

xuzu�+ xuzvµ = xu(z � za)

L1

xuL2

xuL3

,

8
<

:

xu�+ xvµ = x� xa

(xuyv � xvyu)µ = xu(y � ya)� yu(x� xa)

(xuzv � xvzu)µ = xu(z � za)� zu(x� xa)

L1

L2 � yuL1

L3 � zuL1

Ce système est compatible si et seulement si les deux dernières équations sont proportionnelles, c.a.d. avec

les produits en croix :
�
xuyv � xvyu

��
xu(z � za)� zu(x� xa)

�
=

�
xuzv � xvzu

��
xu(y � ya)� yu(x� xa)

�
(1)

(1) , (yuzv � yvzu)xu(x� xa)� (xuzv � xvzu)xu(y � ya) + (xuyv � xvyu)xu(z � za) = 0

(1) , (yuzv � yvzu)(x� xa)� (xuzv � xvzu)(y � ya) + (xuyv � xvyu)(z � za) = 0 car xu 6= 0.

Finalement (1) s’écrit ax+by+cz+d = 0 avec

8
>><

>>:

a = yuzv � yvzu

b = �xuzv + xvzu

c = xuyv � xvyu

d = �xa(yuzv � yvzu) + ya(xuzv � xvzu)� za(xuyv � xvyu)

De plus, si on avait (a, b, c) = (0, 0, 0), ~u et ~v seraient colinéaires (produits en croix) ce qui est contradictoire

avec (A, ~u,~v) est un repère de P .

Conclusion : P admet une équation de la forme ax+ by + cz + d = 0 avec (a, b, c) 6= (0, 0, 0).

Inversement, soit F une partie de R3
qui admet une équation de la forme ax+ by + cz + d = 0 avec a, b et

c non tous nuls.

Supposons par exemple que a 6= 0.

M = (x, y, z) 2 F , ax+ by + cz + d = 0 , x = � b
ay �

c
az �

d
a .
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Chapitre VI : Notions élémentaires de géométrie a�ne

On obtient donc l’expression paramétrique F = {(�d
a � b

a�� c
aµ,�, µ) | �, µ 2 R}.

On pose A = (
�d
a , 0, 0), ~u = (� b

a , 1, 0) et ~v = (� c
a , 0, 1).

~u et ~v ne sont pas colinéaires (composantes non proportionnelles par les produits en croix) donc F est un

plan de repère (a, ~u,~v).

Enfin, soient M = (x, y, z) et M
0
= (x

0
, y

0
, z

0
) des points de F ,

���!
MM

0
= (x � x

0
, y � y

0
, z � z

0
) vérifie

a(x� x
0
) + b(y � y

0
) + c(z � z

0
) = 0 donc la direction ~F de F admet pour équation ax+ by + cz = 0.

Conclusion : L’ensemble d’équation ax+by+cz+d = 0 avec (a, b, c) 6= (0, 0, 0) est un plan dont la direction

a pour équation ax+ by + cz = 0.

Théorème : équations cartésienne de plans parallèles

Soit P et P
0
des plans de R3

d’équations ax+ by + cz + d = 0 et a
0
x+ b

0
y + c

0
z + d

0
= 0.

P k P
0 , (a, b, c) et (a

0
, b

0
, c

0
) sont proportionnels.

Démonstration :

Les directions de P et P
0
ont pour équations ax+ by + cz = 0 et a

0
x+ b

0
y + c

0
z = 0.

Donc P k P
0
si et seulement si ils ont la même direction, autrement dit ax+by+cz = 0 et a

0
x+b

0
y+c

0
z = 0

sont équivalentes, c’est-à-dire les coe�cients de ces deux équations sont proportionnels. (CQFD)

3.5 Droites de R3

Propriété : équation paramétrique d’une droite de R3

Toute droite de R3
admet une équation paramétrique de la forme

8
<

:

x = xa + �xu

y = ya + �yu

z = za + �zu

de paramètre � 2 R et

où (xu, yu, zu) 6= (0, 0, 0).

Inversement, toute partie de R3
ayant une telle équation paramétrique est une droite de vecteur directeur

~u = (xu, yu, zu) passant par A = (xa, ya, za).

Démonstration : identique à celle dans R2
.

Propriété : équation cartésienne d’une droite de R3

Toute droite de R3
admet une équation cartésienne de la forme (S) :

⇢
ax+ by + cz + d = 0

a
0
x+ b

0
y + c

0
z + d

0
= 0

avec (a, b, c)

et (a
0
, b

0
, c

0
) non proportionnels.

Inversement, toute partie de R3
admettant une telle équation est une droite D dont la direction ~D admet

pour équation le système homogène associé à (S).

Démonstration : Soit D une droite de R3
. Soit A = (xa, ya, za) un point de D et ~u = (xu, yu, zu) un vecteur

directeur. (xu, yu, zu) 6= (0, 0, 0), supposons par exemple que xu 6= 0.

M = (x, y, z) 2 D si et seulement si
��!
AM est colinéaire à ~u,

c’est-à-dire (x� xa, y � ya, z � za) est proportionnel (xu, yu, zu),

qui équivaut, d’après les produits en croix à :

⇢
yu(x� xa) = xu(y � ya)

zu(x� xa) = xu(z � za)

c.a.d.

⇢
yux� xuy + xuya � yuxa = 0

zux� xuz + xuza � zuxa = 0
.

Comme xu 6= 0, (yu,�xu, 0) (zu, 0,�xu) ne sont pas proportionnels, on a bien une équation de la forme

attendue.

Inversement, si une partie F admet une telle équation, F = P \ P
0
où P et P

0
sont les plans d’équations

ax+ by + cz + d = 0 et a
0
x+ b

0
y + c

0
z + d

0
= 0. Comme (a, b, c) et (a

0
, b

0
, c

0
) ne sont pas proportionnels, P

et P
0
ne sont pas parallèles donc leur intersection F est une droite.
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