Polynomes & Fractions Rationnelles

0.1 Polyndémes, opérations sur les polyndmes

Dans tout ce chapitre, on notera K =R ou C.

Définition 0.1. Un polynoéme (a une indéterminée) a coefficients dans K est une suite
P = (ay)r>o d’éléments de K nulle a partir d’'un certain rang, c¢’est-a-dire telle qu’il existe
n € N tel que ax = 0 pour tout £ > n. Les nombres a; s’appellent les coefficients de P.

Remarque 0.2. 1. Deux polynémes sont égaux si et seulement si leurs coefficients
respectifs sont égaux.

2. Lorsque tous les coefficients de P sont nuls, on dit que P est le polynéme nul et
on note P = 0.

Définition 0.3. Soit P un polynéme non nul. Le plus grand entier k tel que a; # 0 est
appelé le degré de P. On le note deg P. Par convention deg ) = —o0.

Soit P = (ag)g>0 un polyndéme non nul et n € N tel que a;, = 0 pour tout k£ > n. On
notera désormais :
P:anX”+~--+a1X+a0.

Si deg P = n, le terme a, X" est appelé monome de plus haut degré de P. Le coefficient
a, est appelé le coefficient dominant de P. Si a, = 1, P est appelé un polynéme
unitaire.

On appelle polyndme constant tout polynoéme de la forme ag, ¢’est-a-dire tout po-
lynéme dont les coefficients sont nuls & partir du rang 1.

Notation. On note K[X| l’ensemble des polynomes a coefficients dans K. Pour N € N,
on note aussi Ky[X]| l’ensemble des polynomes de degré < N :

KN[X]:{(INXN—F"'—FCL()Z(IZ'GK}.

Remarque 0.4. On peut identifier I’ensemble des polyndémes constants a K et donc
identifier K & un sous-ensemble de K[X] : K C K[X].

Définition 0.5 (Opérations élémentaires). Soient P, € K[X]| deux polyndmes, A € K.

On note : ) .
P=> aX" Q=) kX"
k=0 k=0

On note a; = 0 pour tout k > p et by = 0 pour tout £ > ¢. On définit alors :

max(p,q)

k=0



la somme des polynomes P et ). C’est le polynome associé a la suite (ay + bg)r>o0-

pt+q

PO — ’; ( 3 aibj>Xk,

=| i+j=k

le produit des polyndémes P et (). C’est le polynome associé a la suite (Ziﬂ:k a;b;)k>0-

p
AP =) AapX*,
k=0

le produit du scalaire A et du polynome P. C’est le polynome associé a la suite (Aag)g>o-

Exemple. (X2 +2X)+ (X3 4+ X2+1)=X?+2X?2+2X +1
(X2+X)(X+1)=X3+2X?+ X
3(X?+2X +5)=3X?+6X+15

On définit alors les puissances d’un polynéme P par récurrence en posant :
P’ =1et P" = P"'P pour tout n > 1

Le monéme X = (0,1,0,0,...,) est appelée 'indéterminée. On a alors X™ = (dx,) x>0 Ol
Opn = 1sik =net g, = 0si k # n. Ceci justifie le choix de I’écriture a, X"+ - -+a; X +ag
pour un polynéme (ay)g>o de degré au plus n.

Soient P, (), et R des polynémes. On a :

o (P+Q)+R=P+(Q+ R) :laloi + est associative,

o P+Q=Q+ P :laloi + est commutative,

o 04 P = P : 0 est un neutre pour la loi +,

o P+ (—=1)P =0 : tout élément de K[X] admet un inverse pour la loi +.
On dit alors que (K[X],+) est un groupe commutatif.

o (PQ)R = P(QR) : la loi x est associative,

o PQ = QP :laloi x est commutative,

¢ 1-P = P :1 est un neutre pour pour la loi x,

o P(Q+ R) = PQ + PR : la loi x est distributive par rapport a la loi +.
On dit alors que (K[X],+,x) est un anneau commutatif.

Proposition 0.6. (Formule du bindme de Newton) Soient P,Q € K[X] et n € N. Alors :
" /n
P+ n_ Pnfk k )
P =3 (3) P

Démonstration. La preuve est la méme que pour la formule du binéme de Newton dans
K : par récurrence sur n > 0 en utilisant les régles de calcul sur les opérations dans
K[X]. O

Proposition 0.7. Soient P,Q € K[X]. On a :
deg(P + @) < max(deg P,deg Q) et deg(PQ) = deg P + deg Q.
De plus, si deg P # deg @, on a deg(P + Q) = max(deg P,deg Q).
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Démonstration. Prouvons d’abord 'inégalité pour le degré de la somme. Si P = () = 0,
alors P+@Q = 0 et on a deg(P + Q) = max(deg P, deg () = —oo. Supposons a présent que
au moins un des deux polynémes P ou ) est non nul. On note n = max(deg P, deg Q) et
on an € N. On peut écrire :

P = zn:akxk, Q= Zn:ka".
k=0 k=0

On obtient P+ Q = >_;_,(ax + by) X*, ce qui prouve deg(P + Q) < n. Le coefficient de
degré n de P + @ est a, + b,. Supposons par exemple deg P # deg (). Si deg P > deg Q,
on a a, # 0 et b, = 0 donc a, + b, = a, # 0 et deg(P + Q) = n. Le cas deg P < deg @
est similaire.

Montrons a présent I'égalité pour le degré du produit. Si P = 0 ou ¢ = 0, alors
PQ =0 et on adeg(PQ) = —oo = deg P+ deg (), ou la derniére égalité vient du fait que
la somme de —oco et de NV € {—o0} UN vaut —oo. Supposons a présent que P et ) sont

non nuls. On écrit : » .
P=Y aXxt Q=) X",
k=0 k=0

ou p et g sont les degrés respectifs de P et ) (en particulier a, et b, sont non nuls). On a
alors PQ = > 71 (Ziﬂ.:k aibj>X’“, ce qui prouve deg(PQ) < p+q =deg P+deg@. Le
coefficient de degré p+q de PQ est a,b, # 0, et donc deg(PQ) = p+q = deg P+deg Q. [

L’inégalité dans la proposition précédente peut étre stricte comme le montre I’exemple
suivant. Avec P=X,Q=—-X+1, P+Q =1,0ona:

deg(P + Q) = 0 # 1 = max(deg P, deg Q) .
Corollaire 0.8. 1. VA BeK[X],AB=0= (A=0ou B=0)
2. VA,B,C e KIX],(AC=BC etC #0)= A=1B

Démonstration. 1. Par contraposée. Si A et B sont non nuls, alors deg A € N et
deg B € N. La proposition précédente donne donc deg(AB) = deg A + deg B € N
et donc AB # 0.

2. Si AC = BC, on a (A— B)C = 0 et il suffit d’utiliser le point précédent pour
obtenir A — B = 0.
O

Définition 0.9. Soit P = >}  a;,X* € K[X]. La fonction
fri K=K

n
T E apx® = ag 4+ a1z + - - + a,a”.
k=0

est appelée application polynomiale associée au polynéme P.

On appellera application polynomiale sur K toute application f : K — K telle qu’il
existe P € K[X] tel que f = fp. Dans la pratique, on écrira souvent P(z) pour fp(z).



Remarque 0.10. Lorsque K = R ou C, si 'application polynomiale fp est identiquement
nulle alors on peut montrer que tous les coefficients a; sont nuls et donc P = 0 (exercice :
le faire). En particulier, un polynéme non nul définit une application non nulle.

Proposition 0.11. Soient P,Q € K[X] et A,z € K. Alors :
(P +Q)(z) = P(z) + Qz), (PQ)(z) = P(2)Q(x) et (AP)(z) = AP(z).
Démonstration. Immédiat. O

Définition 0.12. (Composée de deux polynoémes) Soient P = >, ap X* € K[X] et
Q) € K[X]. On définit :

PoQ=PQ)=> aQ".
k=0

Exemple. Si P=X+ X +1et Q= X? ona P(Q)=X"Y+X?+1.

Proposition 0.13. Soient P et ) deux polynémes non constants. Alors on a :

deg(P o Q) = deg(P) - deg(Q) .

Démonstration. Exercice. O

0.2 Dérivation et formule de Taylor

Définition 0.14. Soit P = >_}_,a;,X* € K[X]. On appelle polyndme dérivé de P le
polyndéme P’ suivant :

P = Zkaka’1 si deg P > 1 et P’ =0 sinon .
k=1

Proposition 0.15. Soit P € K[X].
1. sideg P > 1, alors on a : deg(P') = deg(P) — 1
2. sideg P < 1, alors P' =0 et deg(P') = —o0

Démonstration. Immeédiat. O

Proposition 0.16. Soient P,Q € K[X] et A\, u € K. Alors on a :
1. AP+ uQ) = \P' + u/
2. (PQ) = P'Q+ PQ

Démonstration. Exercice. O

On définit par récurrence les polynomes dérivés successifs de P. Par convention, P() =
Pet P = PW. Pour k > 2, on note P*) = (Pk-1))

Proposition 0.17. Soit P = Z?:o a; X7 un polynome de degré n.
. n .. . i n j! j—
Sik<n, PO =370, 05 —1)(J—k+ )X =30 ajzlm X7

Sik>n, P¥)=0.



Démonstration. Immediat par récurrence. O

Proposition 0.18. Soient P € K[X] et k € N. Alors on a :
1. sideg P >k, alors on a : deg(P™)) = deg(P) — k
2. sideg P <k, alors P =0 et deg(P®) = —c0

Démonstration. Immeédiat. O

Proposition 0.19. Soient P,Q € K[X], \,u € K et n € N. Alors on a :
2. (Formule de Leibniz)

PQI =y (Z)pw("’f)
k=0

Démonstration. 1. Immédiat.
2. Par récurrence sur n (exercice).

]

Proposition 0.20. (Formule de Taylor) Soient P € K[X] de degré n > 0 et a € K. On
a alors :

" pW)(q
P_Zpk;!( )(X—a)k

Démonstration. On commence par montrer la formule pour le monéme X™. On a :

- M E) (o “nn—1)---(n— ank

k=0 k=0

- kﬁ% (Z)a”’“(X —a)f = (X —a+a)"=X"

en utilisant la formule du binéme de Newton. Considérons maintenant P = ZZ:O ap,XP €
K[X]. En utilisant le cas précédent, on obtient :

" p)(g n P\ (g
ZP ()(X—Q)k:ZZGP<X)‘()(X—Oé)k

k=0 k! k=0 p=0 k!
~  « (X")¥(a) -
= a, 1 (X —a)f = Zapo =P
p=0 k=0 p=0



0.3 Arithmétique sur les polynémes

Définition 0.21. Soient A, B € K[X]. On dit que B divise A (et on note B | A) s’il
existe C' € K[X] tel que A = BC.

Exemple. B = X? divise A = (X — 1)X*(X + 2). En effet, A = BC ou on note
C=(X—-1)X(X +2).

Remarque. 1. Si B | A avec A # 0, alors deg B < deg A. En effet, il existe alors
C € K[X] non nul tel que A = BC et donc :

deg A = deg B+ degC > deg B.

2. Soient A,B,C € K[X]. Si C | A et C | B, alors C | AP + BQ pour tous P,Q €
K[X].

3. Soient A, B € K[X]. Alors on a : (A | B et B | A) ssi il existe A € K* tel que
A = AB (ezercice : le prouver). On dit alors que A et B sont associés.

Théoréme 0.22 (Division euclidienne). Soient A, B € K[X] tels que B # 0. Il existe
alors un unique couple (Q, R) € (K[X])? tel que :

A=QB+R et deg R < deg B.

Les polynomes () et R sont appelés les quotient et reste de la division euclidienne de
A par B.

Démonstration. Commengons par prouver 'unicité. Supposons qu’il existe @), @, R, Re
K[X] tels que :

A:QB+R:@B+§ avec deg R < deg B et deg}~%<degB.

On en dédllit que (Q — @)B = R — R. Par I’absurde, supposons que @ # @ Alors
deg((Q — Q)B) > deg B, tandis que deg(R — R) < deg B, contradiction. Ainsi ) = @ et
on déduit que R = R.

On montre & présent l'existence. Notons B = >"1_, by X* ot p = deg B > 0 (puisque
B #0). Si deg B = 0, le polynéme B est un polynoéme constant non nul et il suffit de
prendre () = A/by et R = 0. On peut donc supposer p > 0 dans la suite. On montre par
récurrence sur n > 0 la propriété (H,) suivante.

(H,) : Pour tout A € K,[X], il existe (Q, R) € (K[X])? tel que A = QB+ R et deg R < p.

o Initialisation. (H,,) est vraie pour tout n < p : en effet, si deg A < n < p, il suffit
de prendre Q =0 et R = A.

o Hérédité. Supposons a présent que (H,) est vraie pour un certain entier n > p—1
et montrons que (H,1) est vraie.

Soit A = ZZ:; ap X" € K, 11[X]. On considére alors le polynoéme suivant :

A= g_ 4l yn+1p g
bp



On remarque que AeK, [X]. On peut donc appliquer lhypothese de recurrence
(H,) au polynome A : il existe (Q, R) € (K[X])2 tel que A = QB+ R et deg R < p.
On pose alors :

Q= Q—l— . X™1P ot R=R,

P

et on a alors A = BQ + R. On a prouvé que (H,1) est vraie.
Par application du principe de récurrence, la propriété (H,) est vraie pour tout n > 0. O

Corollaire 0.23. Pour tous P € K[X] et a €K, on a :
P(a) =0 si et seulement st X —a | P.
Démonstration. La division euclidienne de P par X — « s’écrit :
P=(X—-a)Q+ R avec degR < 1

En particulier R est un polynéme constant. On évalue en x = « et on obtient P(a) = R.
On en déduit que P(a) =0ssi R=0ssi X —a | P. O

Exemple. On peut effectuer la division euclidienne de deux polyndémes en la posant,
comme une division d’entiers. Dans [’exemple suivant, on calcule la division euclidienne
de A=6X3—2X?+ X +3 par B=X?>—-X +1.

6X3—2X2 + X +3[X2-X+1
—6X3+6X%2—-6X 6X +4

4X2 -5X +3
—4X?24+4X —4
- X -1

On obtient le quotient () = 6X + 4 et le reste R = —X — 1.

Proposition 0.24. Soient A, B € K[X] tels que (A, B) # (0,0). L’ensemble des degrés
des diviseurs communs a A et B est une partie non vide et majorée de N.

Démonstration. Comme 1 divise tous les polyndémes, cet ensemble contient deg1l = 0 et
est donc non vide. De plus, comme le polyndéme nul ne divise que lui-méme, il n’est pas
diviseur commun, et I’ensemble considéré est donc inclus dans N. Enfin, le degré de tout
diviseur commun est majoré par max(deg A, deg B). O

Il existe donc un diviseur commun a A et B de degré maximal. Ceci conduit a la
définition suivante :

Définition 0.25. Soient A et B deux polynomes de K[X] tels que (A, B) # (0,0). Tout
diviseur commun a A et B de degré maximal est appelé un plus grand diviseur com-
mun (PGCD) de A et B.



Remarque 0.26. Un PGCD de deux polynémes non tous deux nuls est non nul, car son
degré est un entier naturel.

Remarque 0.27. Si D est un PGCD de A et B, alors AD est aussi un PGCD de A et B
pour tout A € K*. On montrera qu’en fait, tout PGCD de A et B est de cette forme.

Proposition 0.28. Soient A, B € K[X] tel que B # 0. Si R est le reste de la division
euclidienne de A par B, alors l’ensemble des diviseurs communs a A et B est égal a
I’ensemble des diviseurs communs a B et R. En particulier, tout PGCD de A et B est
aussi un PGCD de B et R et vice versa.

Démonstration. On écrit la division euclidienne de A par B : A = BQ + R. Soit D un
diviseur commun & A et B : D | Aet D | B. 1l existe des polynomes A et B tels que
A= DA et B= DB. En remplacant, on obtient :

R=A—-BQ=DA—-QDB=D(A-QB),

donc D | R. Réciproquement, si B = DB et R = DR, alors A= BQ + R = D(QB + R),
donc D | A. O

Proposition 0.29. Soient A, B € K[X] tels que (A, B) # (0,0). Soit D un PGCD de A
et B. On a alors :
VP eK[X],(P|AetP|B) <= P|D

Démonstration. Pour un polynéme P, notons D(P) I’ensemble des diviseurs de P. Mon-
trons par récurrence sur n € N la propriété suivante :

(Hy,) : Si A, B € K[X] sont tels que (A, B) # (0,0) et min(deg A,deg B) < n et si D
est un PGCD de A et B, alors D(A) N D(B) = D(D).

Initialisation : Montrons tout d’abord (Hy). Soient A, B € K[X] tels que (A, B) #
(0,0) et min(deg A, deg B) < 0. Alors exactement un des deux polynémes A et B est nul.
Par exemple, A # 0 et B = 0. On a alors D(A) N D(B) = D(A) et donc (Hp) est vé-
rifiée puisque tout PGCD de A et B = 0 est de la forme AA avec A € K* (exo : le montrer).

Hérédité : Supposons a présent (H,) vérifiee pour un certain n > 0 donné. Soient
A, B € K[X] tels que (4, B) # (0,0) et min(deg A, deg B) < n+ 1 et soit D un PGCD de
A et B. On peut supposer par exemple que deg B < deg A. Si deg B < n, alors on peut
conclure par (H,). Si deg B = n, on a B # 0 et donc on peut écrire la division euclidienne
de A par B : A= BQ + R avec deg R < deg B. En particulier, on a deg R < deg B = n.
En utilisant la proposition précédente, on a D(A) N D(B) = D(B) N D(R) et D est donc
aussi un PGCD de B et R. En utilisant ’hypothése de récurrence (H,,), on obtient alors
D(A)ND(B) = D(D). Ceci montre que (H,1) est vraie. Par application du principe de
récurrence, la propriété est vérifiée pour tout n, ce qui montre la propriété désirée. ]

Proposition-Définition 0.1. Soient A, B € K[X] tels que (A, B) # (0,0). Soient D; et
D5 deux PGCD de A et B. Alors, Dy et D, sont associés, c¢’est-a-dire qu’il existe A € K*
tel que D = AD,. En particulier, il existe un unique PGCD unitaire de A et B. On
I'appelle le PGCD de A et B, et on le note PGCD(A, B).



Démonstration. D’aprés la proposition précédente, on a D(A)ND(B) = D(D,) = D(D»),
ol on note encore D(P) I'ensemble des diviseurs de P. On a donc en particulier Dy | Do
et Dy | Dy. 1l existe donc des polynomes P et @ tels que Dy = PDy et Dy = QD1 et
alors D; = PQD;. Comme (A, B) # (0,0), on a Dy # 0 et donc PQ = 1. Les polynomes
P et () sont donc des polynémes constants non nuls.

En particulier, on en déduit lexistence d’'un PGCD unitaire de A et B (il suffit de
prendre un PGCD et de le diviser par son coefficient dominant). L’unicité vient du fait
que deux polynoémes unitaires associés sont égaux. O]

On peut alors obtenir le pged de A et B en faisant des divisions euclidiennes successives,

comme avec les entiers : c’est ’algorithme d’Euclide.

Algorithme d’Euclide.
1. Poser Ry = A et Ry = B.
2. Tant que Ry # 0 :

Ry = reste de la division euclidienne de Ry par Ry; Ro<+ Ry, R <+ Rs.

3. Le dernier reste non nul normalisé est le pged de A et B.

Lemme 0.30 (Bézout). Soient A, B € K[X] tels que (A, B) # (0,0). Alors il existe deux
polynomes U,V € K[X] tels que :

AU + BV = PGCD(A, B)
Démonstration. On montre par récurrence sur n € N la propriété suivante :

(Hy,) : Si A, B € K[X] sont tels que (A, B) # (0,0) et min(deg A, deg B) < n, alors il
existe deux polynomes U, V' € K[X] tels que AU + BV = PGCD(A, B).

Initialisation : Soient A, B € K[X] tels que (A, B) # (0,0) et min(deg A, deg B) < 0.
Alors un des deux polynémes A et B est nul et ’autre non. Par exemple, supposons A # 0
et B = 0. Notons a # 0 le coefficient dominant de A. En posant U = 1 et V=0,0na
alors que AU + BV = LA est le polynome unitaire associé¢ & A, ¢’est- a-dire PGC’D(A 0).
La propriété (Hy) est donc vraie.

Hérédité : Supposons la propriété (H,) vérifie pour un entier n > 0 donné et
montrons que (H,1) est vraie. Soient A, B deux polynémes tels que (A4, B) # (0,0) et
min(deg A, deg B) < n + 1. Supposons par exemple deg(A) > deg(B).

Si min(deg A, deg B) < n, il suffit d’appliquer (H,) pour conclure. Sinon, deg B = n.
En particulier, B est non nul. On effectue la division euclidienne de A par B :

A=BQ+ R avec degR <degB =n.
On peut alors appliquer (H,,) au couple (B, R) : il existe U,V e K[X] tels que
BU + RV = PGCD(B,R).
Mais on a vu précédemment que PGCD(A, B) = PGCD(B, R). On a donc :
PGCD(A,B) = BU + RV = BU + (A — BQ)V = AV + B(U — QV).
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Onpose U =V et V =U—QV et on a donc PGCD(A, B) = AU + BV. Ceci montre que
(Hp41) est vraie. Par application du principe de récurrence, la propriété (H,,) est vérifiée
pour tout n € N, ce qui permet de conclure. O

Exemple. On veut calculer PGCD(A, B) pour A = X* —4X3 +2X? + X +6 et B =
X4 —3X34+2X2%2+ X +5. Lalgorithme d’Euclide donne successivement :
X 4X3 42X+ X 46 = (X' —3X* +2X2 + X +5) x 1 +(=X* +1)
X' 383X 42X+ X +5=(-X’+1)(—X +3) + (2X* +2X +2)
—XP 1= (2X2 42X +2)(—X/2+1/2)
Le dernier reste non nul est un PGCD de A et B donc PGCD(A,B) = X*+ X + 1. En
remontant ’algorithme précédent, on obtient :
(2X2+2X +2) = (-X*+1)(X —-3)+ B
(2X?+2X+2)=(A-B)(X-3)+B
(2X?+2X +2)=(X -3)A+ (4 - X)B
X’ +X+1=AU+BV avch:%X—g etV:Q—%X

Définition 0.31. On dit que deux polynémes P et ) de K[X] non tous les deux nuls sont
premiers entre eux si PGCD(P, Q) = 1, c’est-a-dire si leurs seuls diviseurs communs
sont les polyndémes constants non nuls.

Remarque 0.32. Soient A, B,C' € K[X] non nuls. On a alors : PGCD(A, B) = C si et
seulement si il existe des polynomes A et B tels que A = AC, B = BC avec A et B
premiers entre eux (exercice : le montrer).

Exemple. X2 —1 et (X + 1)(X +2) ne sont pas premiers entre euzx puisque leur PGCD
unitaire est X + 1. A Uinverse X? +1 et (X + 1)(X + 2) sont premiers entre euz.

Proposition 0.33. Soient A, B € K[X]. Alors A et B sont premiers entre euz si et
seulement si il existe U,V € K[X] tels que AU + BV = 1.

Démonstration. Le sens direct est une conséquence immédiate du lemme de Bézout. Mon-
trons la réciproque. Supposons qu'il existe U, V' € K[X] tels que AU+ BV = 1. Alors tout
diviseur commun a A et B divise aussi AU et BV et donc AU + BV = 1. Le polynéme
D est donc constant non nul, ce qui permet de conclure. O
Corollaire 0.34. Soient A, B,C € K[X] tels que A et B sont premiers entre euz, et A
et C' sont premiers entre eux. Alors A et BC' sont premiers entre eux.

Démonstration. Si A et B sont premiers entre eux et A et C' sont premiers entre eux,
alors d’apres la proposition précédente il existe U, V, UVe K[X] tels que AU + BV =1
et AU 4+ CV = 1. En multipliant les deux égalités précédentes, on obtient :

1= (AU + BV)(AU + CV) = AU + BCV
oulonanoté U = UUA+BVU+UCV et V = VV. Alors, toujours d’aprés la proposition
précédente, les polynomes A et BC' sont premiers entre eux. O]

Lemme 0.35 (Lemme de Gauss). Soient A, B,C € K[X]. Si A divise BC' et si A et B
sont premiers entre eux, alors A divise C.

Démonstration. Supposons que A divise BC' et que A et B sont premiers entre eux. Il
existe donc deux polynémes U et V' tels que AU + BV = 1. En particulier, on a alors
AUC + BVC = C. Comme A | BC, il existe Q € K[X] tel que BC = AQ. On a donc
AUC+BVC =AUC+VQ)=Cetdonc A|C. O
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0.4 Racines d’un polynoéme

Définition 0.36. Soient P € K[X] et r € K. On dit que r est racine de P si P(r) = 0.

Définition 0.37. Soient P € K[X] et r € K. L’ordre de multiplicité de r dans P
est I'unique entier m > 0 tel que (X — )™ divise P et (X — r)™*! ne divise pas P. Par
convention, I'ordre de multiplicité de tout r» dans P = 0 est égal a +o0.

Notons que r est une racine de P si et seulement si m > 1. Si I'ordre de multiplicité m
est 1 (resp. 2, resp. > 2), on dit que la racine r est simple (resp. double, resp. multiple).

Exemple. Le polynome (X —1)*(X —2)(X —3) a 1 comme racine double et 2 et 3 comme
racines simples.

Proposition 0.38. Un polyndéme non nul de degré n a au plus n racines dans K.

Démonstration. On proceéde par récurrence sur l’entier n. Un polyndéme constant non nul
P de degré n = 0 n’a pas de racines. Supposons la propriété vérifiée pour les polyndémes
de degré < n, ou n > 0. Soit P un polyndéme non nul de degré n + 1. Si P n’a pas de
racine, la propriété est vérifiée. Sinon, soit r une racine de P. Le polynéme P peut donc
s’écrire P = (X — r)Q@, ou @ est un polyndéme de degré deg@ = n. Par hypothése de
récurrence () a au plus n racines, on en déduit que P a au plus n + 1 racines. O

Proposition 0.39. Soit P € K[X| non nul et soit r € K une racine de P. La multiplicité
m de la racine r est ['unique entier m tel que :

Pr)=P/(r)=--=P" V() =0 et P"()#0.

Démonstration. Soit r une racine de multiplicité m de P. Alors P = (X — r)™Q avec
Q(r) # 0. En dérivant P, on obtient :

P = m(X = )" Q 4 (X =1)"Q = (X = )" (mQ + (X = 1)Q).

P’ est de la forme (X — r)™71Q; avec Q1 = mQ + (X — r)Q’. En particulier Q;(r) =
mQ(r) # 0. Donc P(r) = P'(r) = 0 si et seulement si m > 1.
En dérivant k fois en utilisant la formule de Leibniz, on obtient que pour tout k < m,

P® = (X —r)"*Qy
avec Q(r) =m(m—1)...(m —k+ 1)Q(r) #0, et
P™ = Q. avec Qum(r)=m!Q(r) #0.
Donc pour tout k < m, P*)(r) =0, alors que P (r) = m!Q(r) # 0.

Réciproquement, supposons que P(r) = P'(r) = --- = P Y(r) = 0 et P™(r) # 0.
Soit n la multiplicité de r. D’aprés ce qui précéde, on a :
P(r)y=---=P"V(r)=0 et P™(r)#0.
Ceci montre que m = n. O

Exemple. Soit P = X°—X*—6X3+14X%2-11X+3. On a alors P’ = 5X*—4X3—-18X%+
28X — 11, P" =20X°% — 12X? — 36X + 28, P®) = 60X2 — 24X — 36, P = 120X — 24.
On a donc P(1) =1—-1-6+14—-11+3=0, P/(1) =5—-4—-18+28—-11 =0,
P"(1) =20—12-36+28 =0, P®)(1) =60 —-24—36 =0 et PW(1) = 12024 = 96 # 0.
Ceci montre que 1 est racine de P de multiplicité 4.
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0.5 Décomposition en produit de polynémes irréduc-
tibles

Définition 0.40. Un polynéme non constant P € K[X] est irréductible (sur K) si
les seuls diviseurs de P sont les polynoémes constants non nuls A (ot A € K*) et les
polynémes AP associés & P (ou A € K*). Ainsi un polynome irréductible est un polyndéme
non constant P tel que :

VA, B € K[X],P=AB = (degA =0 ou deg B =0)

Remarque 0.41. La définition précédente est I’analogue des nombres premiers pour
I’arithmétique dans Z.

Exemple. Tout polynéme de degré 1 est irréductible. En effet, si P de degré 1 se factorise
P = AB, alors on a : 1 = deg P = deg A+deg B. Comme deg A et deg B sont des entiers,
on en déduit que deg A = 0 ou deg B = 0, c’est-a-dire A est constant ou B est constant.

Exemple. X2 + 1 n'est pas irréductible sur C puisque X* + 1 = (X —4)(X +1).

Exemple. En revanche, X?+1 est irréductible sur R. En effet, X?> 4+ 1 n’a pas de racine
réelle donc n’admet aucun diviseur de degré 1 dans R[X]. Les seuls diviseurs de X* + 1
sont donc les polynémes constants non nuls et les polynomes de la forme AN(X? + 1) avec
A € R*. Le polynome X? + 1 est donc irréductible. Plus généralement, tout polynome réel
de degré 2 avec discriminant strictement négatif (donc sans racine réelle) est irréductible.

Lemme 0.42 (Lemme d’Euclide). Soit P € K[X] irréductible et A, B € K[X]. Si P | AB
alors P | A ou P | B.

Démonstration. Si P | A, alors la conclusion est vérifiée. Si P t A alors les polynémes A et
P sont premiers entre eux. Par le lemme de Bézout il existe U,V tels que AU + PV = 1.
Multiplier par B donne AUB + PV B = B. Comme P | AB, on obtient que P | AUB.
Comme P divise aussi PV B, le polynéme P divise la somme AUB + PV B = B. O

Le théoréme suivant est ’analogue du théoréme fondamental de I'arithmétique :

Théoréme 0.43 (Factorisation en produit de polyndmes irréductibles). Tout polynome
P e K[X]\ {0} s’écrit

P = AP ... PN,
ou A€ K*, N € N, les P; sont des polynémes irréductibles unitaires deux a deux distincts

et les a; sont des entiers strictement positifs.
Cette décomposition est unique a réarrangement pres.

Démonstration. On prouve par récurrence sur n € N la propriété suivante :

(H,) : Pour tout polynéme P non nul tel que deg P < n, il y a existence et unicité
d’une factorisation en produit de polynoémes irréductibles.

Initialisation : Si P = ag ol a¢ # 0, il suffit de prendre A = ag et N = 0 et on a bien
P = X. L’unicité est claire. Ceci montre (Hy).
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Hérédité : Supposons (H,) vraie. Montrons (H,41). Soit un polynéme P de degré
< n+ 1. Si deg P < n, il suffit d’utiliser (H,). Supposons & présent deg P = n + 1.
Commencons par prouver l'existence d’une factorisation.

Si P est irréductible, on choisit A égal au coefficient dominant de P, on prend N =1,
PlziPetoq:l.

Supposons a présent P non irréductible. Il peut donc étre écrit sous la forme P = QR
ou () et R sont non constants. Comme deg P = deg(@ + deg R, on a deg@ < n et
deg R < n. On applique alors I'hypothése de récurrence (H,,) & Q et & R, et on peut donc
factoriser Q) et R :

Q=XQY - Q" et R=AgR]"--- R

ou A\g, \g € K*, L,M > 1, les Q); et R; sont irréductibles unitaires et les ; et y; sont des
entiers strictement positifs. On a alors :

P =A@ - Q) ArR]" -~ RY}"),
En regroupant les facteurs communs, on obtient bien une décomposition de la forme :
P = AP - - P3N,

ou A=Ay Ag € K, N > 1, les P, sont irréductibles unitaires deux a deux distincts avec
{P1,....,Pn} = {Q1,...,Qr, R1,..., Ry} et les «; sont des entiers strictement positifs.
Ceci prouve l'existence.

Montrons maintenant 1'unicité. Supposons que P admette deux factorisations en pro-
duits de polyndémes irréductibles :

P=APM...PN — 8§ ... 5K

ou A\, u € K*, NJK > 1, les P, et S; sont irréductibles unitaires et les a; et a; sont des
entiers positifs. Alors S; divise le produit P/ --- Py". Par le lemme d’Euclide, S divise
un des polynomes P;. Comme S; et P; sont irréductibles et unitaires, on en déduit que
S1 = P;. On peut alors diviser les deux décompositions ci-dessus par P; = S;. L’hypothése
de récurrence (H,,) donne 'unicité de la factorisation pour le quotient de P par P; = ;.
En multipliant par P, = S, on obtient 'unicité de la factorisation pour P.

Ceci prouve (H,,1). Par application du principe de récurrence, la propriété (H,,) est
vérifiee pour tout n € N, ce qui permet de conclure. O

Remarque 0.44. Les diviseurs de P dans K[X] sont alors les polynémes de la forme
,qu . Pﬁ,” ,ou u € K* et les 5; sont des entiers tels que 0 < 3; < «;.

On admettra le théoréme suivant, appelé théoréme de d’Alembert-Gauss ou encore
théoréme fondamental de 1'algébre :

Théoréme 0.45 (Théoréme de d’Alembert-Gauss). Tout polynéme non constant de C[X]
admet une racine dans C.

Corollaire 0.46. Les polynomes irréductibles dans C[X] sont les polynémes de degré 1.
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Démonstration. On a déja vu que les polyndémes de degré 1 sont irréductibles. Récipro-
quement, soit P € C[X] irréductible. D’aprés le théoréme de d’Alembert-Gauss, P admet
une racine r dans C. Alors X —r divise P. Comme P est irréductible, il existe A € C* tel
que P = \(X —r). O

Corollaire 0.47. Tout polynome non constant P € C[X] s’écrit sous la forme :

N

P=[J(X —r)™

i=1

ou XA € C* est le coefficient dominant de P, N > 1, ry,...,ry € C sont les racines deux
a deuz distinctes de P dans C de multiplicités respectives aq, ..., ay > 1.

Démonstration. C’est une conséquence immédiate du corollaire précédent et du théoréme
de factorisation en produit de polynomes irréductibles. O

Corollaire 0.48. Les polynémes irréductibles dans R[X]| sont les polynomes de degré 1
et les polynomes de degré 2 avec discriminant strictement négatif.

Démonstration. On a déja vu que les polynémes de degré 1 et les polynémes de degré 2
avec discriminant strictement négatif sont irréductibles sur R.

Soit P € R[X] irréductible sur R, et supposons que deg P > 2. D’aprés le théoréme de
d’Alembert-Gauss, P admet une racine r dans C. Mais puisque P est un polyndéme réel,
on a P = P et donc : L

P(F)=P(F)=P(r)=0=0

et donc 7 est aussi une racine de P. Comme P est irréductible, on a r ¢ R (sinon X —r
diviserait P dans R[X]. Comme P est irréductible et de degré > 2, on obtiendrait une
contradiction). Ceci montre r # 7. Finalement, P admet dans C[X] comme diviseur le
polynéme (X —r)(X — 7). Il existe donc @ € C[X] tel que :

P=(X-7)(X-7Q=(X*>-(r+7X+r7)Q = (X* - 2Re(r)X + [7]*)Q

Comme P est un polynoéme réel, on obtient que () est aussi réel. Finalement, comme P
est irréductible, () est un polyndéme constant : () = A € R*. On a donc :

P = \(X?—2Re(r)X + |r]*)
Le polynéme P est donc de degré 2 de discriminant A = 4\?(Re(r)? — |r]?) < 0. O

Corollaire 0.49. Tout polynéme non constant P € R[X] s’écrit sous la forme :

N M
P=x-J[(xX =r- T+ a; X + b))%
i=1 j=1
avec N € R*, N e N, ri,...,ry € R sont les racines deux & deux distinctes de P dans R
de multiplicités respectives oy, ..., an > 1, M € N, les couples (ay,b1), ..., (ar, byr) € R?

deux a deux distincts sont tels que aJQ- —4b; <0 pour tout 1 < j < M et p1,...,Bu > 1.

Démonstration. C’est une conséquence immédiate du corollaire précédent et du théoréme
de factorisation en produit de polynomes irréductibles. O
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Exemple. On obtient les décompositions en produits de facteurs irréductibles suivantes
pour X* —1 :

X' —1=(X-1)(X =) (X +1)(X +1) dans C[X]

= (X —1)(X +1)(X?+1) dans R[X]

Exemple. On obtient les décompositions en produits de facteurs irréductibles suivantes
pour X* +1 :

LT
71—

X* 1= (X — exp(i) (X — exp(iZ) (X — expli20)(X — exp(i%)) dans C[X]

= (X2 = V2X +1)(X? 4+ V2X +1) dans R[X]

0.6 Fractions rationnelles et décomposition en éléments
simples

0.6.1 Fractions rationnelles

Définition 0.50. Une fraction rationnelle (& coefficients dans K) est le quotient de
deux polyndmes, c’est a dire

F = g avec P € K[X]|, @ € K[X]\ {0}.

Remarque 0.51. Voici comment définir rigoureusement la fraction rationnelle F' = P/Q).
On peut vérifier que la relation ~ définie par (P, Q) ~ (R,S) ssi PS = QR est une
relation d’équivalence sur K[X] x K[X]\ {0}. La fraction rationnelle F' = P/(@ est alors
la classe d’équivalence de (P, Q).

Notation. On note K(X) l’ensemble des fractions rationnelles a coefficients dans K.

On définit 'addition et la multiplication de fractions rationnelles par :

P R PS+QR P R PR

Q's T Tas Q'S T qgs

Remarque 0.52. Muni de ces deux opérations, on peut vérifier que K(X) est un corps.

Définition 0.53. Le degré d’'une fraction rationnelle F' = g est par définition :

deg(F) = deg(P) — deg(Q)
Notons que deg(F’) est un élément de Z U {—o0}.

Soit F' € K(X) une fraction rationnelle. Alors F' peut s’écrire g ou P € K[X] et
Q € K[X]\ {0} sont premiers entre eux. Cette écriture est unique, & une constante
multiplicative prés. Elle s’appelle la représentation irréductible de F'.
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Définition 0.54. Soit ' € K(X) donnée sous forme irréductible g. On appelle zéros de
F les zéros de P. On appelle poles de F' les zéros de (). La multiplicité d’un zéro ou d’'un
pole de F' est sa multiplicité en tant que zéro de P ou de Q.

Soit F' = g une fraction rationnelle donnée sous forme irréductible. Soit P € K
I’ensemble des poles de F'. On associe & F' la fonction suivante :

P(x)
Qx)

Cette fonction s’appelle I’application rationnelle associée a F'. On écrira souvent F(x)
a la place de fr(z).

X —

0.6.2 Décomposition en éléments simples
Voici le résultat principal de cette section :

Théoréme 0.55 (Décomposition en éléments simples dans C(X)). Soit

A

Etant donnée la décomposition en produit de polynémes irréductibles de B :
B=XAX—r)% X+ x (X —ry)™,

on peut écrire F' de maniére unique comme somme :

e d’un polynome E, appelé la partie entiere de F, qui est le quotient de la division
euclidienne de A par B,

. Cij . , '
o d’éléments simples —2— ou1<i< N, 1<j<aq; ¢; €C.

(X =)/

On a alors :

N & ..

i=1 j=1
Pour prouver le théoréme précédent, commencons par prouver le résultat suivant :

Lemme 0.56 (Division suivant les puissances croissantes). Soient A € K[X] et B € K[.X]
tel que B(0) # 0. Pour tout n > 0 il existe (Q, R) € K, [X] x K[X] unique tel que :

A=BQ+ X""R.
Démonstration. On démontre le lemme par récurrence sur n. Si n = 0, en écrivant :
A=anXV 4+ +ay et B=by XM+ +b,

par hypothése, on a by = B(0) # 0. On cherche un polynéme @ de degré au plus 0, donc
constant. Le seul possible est



car on a alors (A—BQ)(0) = ag—by-(ap/bg) = 0, donc X | (A—BQ), et donc A—BQ = XR
pour un certain polynéome R € K[X].

Supposons 'hypothése satisfaite jusqu’a l'ordre n — 1, avec n > 1. Il existe donc
Qn-1 € K,_1[X] et R,_1 € K[X] tels que

A=BQn1+X"R,_1.
Procédant comme ci-dessus, on peut écrire :
R, 1 =AB+ XR,
ou A= R,,_1(0)/by et R € K[X]. On a donc :
A=DB(Q, 1 +2X")+ X""R,
ce qui prouve l'existence de la décomposition a ’ordre n en posant :
Q=0Qn 1+ X" e K,[X].
Supposons qu’il y ait un autre couple (Q, R) convenant. On a alors :
B(Q - Q) = X"*(R - R).

Comme B(0) # 0, les polynomes X "+l et B sont premiers entre eux. D’apres le lemme de
Gauss, X ”fl divise donc @ — Q. Mais comme @ — @ est de degré¢ au plus n, ceci implique
que @ = @ et donc R = R. Ceci prouve 'unicité de la décomposition a I'ordre n. n

Corollaire 0.57. Soient r € K, A € K[X] et B € K[X] tel que B(r) # 0. Pour tout
n >0, il existe (Q, R) € K,[X] x K[X] unique tel que :

A=BQ+ (X —r)""'R.
On peut maintenant conclure la preuve du théoréme [0.55]:

Preuve du théoréme[(.53. On montre l'existence de la décomposition dans C(X) par ré-
currence sur le nombre N de racines distinctes du dénominateur B.

Quand N =0, F' € C[X]. On prend £ = F.

Supposons ’existence établie pour N — 1 poéles distincts, o N > 1. Supposons que :

B=AX—r)" x---x (X —ry)*.

ou les r; sont distincts deux a deux. D’apreés le corollaire [0.57] appliqué aux polynémes A
et B=ANX—r)* X X (X —ry_)*™-tavecr=ryetn=ay—1,ona:

A=BQ+ (X —ry)*"R,
ou @ € C,,-1[X] et R € C[X]. On obtient alors :

A A Q
BB (X (X -y

_|_

@

Comme deg @) < ay — 1, on peut l'écrire (exercice : le vérifier) :

Q=cni(X —ry) '+t enay 1 (X = TN) + CNay s
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et on obtient donc :

o (X—’I"N)j B

On applique maintenant ’hypothése de récurrence a R/ B, et la preuve de lexistence
est compléte.

Pour prouver 'unicité, on peut se ramener au cas ou

E+ZZ FaraTiall

11]1

et on montre que le polynéme E et les coefficients ¢;; sont nuls.
En multipliant cette égalité par (X — rn)*¥ puis en évaluant en = ry, on obtient

CNay = 0. On réitére en multipliant successivement par (X — ry)o¥=1 .. (X — ry)
puis en évaluant en z = 7y, on obtient cyay = Cnay—1 = -+ = cy1 = 0. En réitérant
successivement le méme procédé avec les autres poles r;, on trouve que tous les coefficients
ci; sont nuls. On obtient donc £ = 0. Ceci montre 1'unicité. O

Théoréme 0.58 (Décomposition en éléments simples dans R(X)). Soit

A
F—EeR(X).

Etant donnée la décomposition en produit de polynémes irréductibles de B :
B:)\(X_Tl)al Koo X (X_TN)QN X (X2+G1X+b1)/81 X X <X2—|—QMX—|—Z)M)BM,

on peut écrire F' de maniére unique comme somme :

e d’un polynome E, appelé la partie entiere de F, qui est le quotient de la division
euclidienne de A par B,
e d’éléments simples de premiére espéce :
Cij
(X — ’f’i)j7

o1 <1< N,1<j<aq,c;€R,

e d’éléments simples de seconde espéce

din + eij
(X2 + aiX + bi)j7

o1 <i<M,1<j<p, dyj,e; €R.

On a alors :
N M B
F=F Y A
+Z —7"1 +ZZ X2+CLZX+bZ)j
=1 j=1 =1 j=1
Démonstration. Admis O]
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En pratique, pour décomposer une fraction rationnelle F' en éléments simples :

e on commence par écrire I’ sous forme irréductible F' = P/Q

e on calcule d’abord la partie entiére E' de F' : c’est le quotient de la division eucli-
dienne de P par @)

e on factorise () en produit de polynémes irréductibles

e on écrit la forme a priori de la décomposition en éléments simples cherchée (cf les

théorémes et [0.58)

e pour un pole r d'ordre «, le coefficient de

(X—r)«

s’obtient en multipliant par
(X —7)* et en évaluant en X =r

P(r)
Q(r)
Remarque 0.60. Pour déterminer les autres coefficients, on peut évaluer en un point,
multiplier par X* et regarder la limite en +o0. ..

Remarque 0.59. Si r est un pole simple de F', alors le coefficient de 1771 est

X

Remarque 0.61. Si on calcule la décomposition en éléments simples sur R et qu’il y
a un polynome de degré 2 irréductible dans la factorisation de (), on peut commencer
par calculer la décomposition en éléments simples sur C et ensuite regrouper les parties
polaires correspondant aux poles conjugués.

X441
X3 -1

Exemple 1 : F = dans C(X)

On calcule la partie entiére de I’ en calculant le quotient de la division euclidienne de
X* +1 par X3 — 1. On trouve que la partie entiére de F' est X. Ensuite on factorise :

XP—1=(X-1DX - j)(X -7
On en déduit que F' se décompose sous la forme :

a . b . c
X-1 X—353 X-—72

F=X+
ou a, b et ¢ sont trois nombres complexes a déterminer.

On multiplie F' par (X — 1). On obtient alors :

X441 b c
: S~ =X(X-1)+a+ +
XX = =D
2

X—j X-—j?
puis on évalue en z = 1. On trouve : a = 3.

On multiplie de méme par (X — j) puis on évalue en z = j. Ceci donne b = —%.

On remarque que F = F. Par unicité de la décomposition, on a alors a =@, b = ¢ et

c=b.0Onadoncc=>5b= —%. On obtient donc la décomposition suivante :
2 1 1 1 1 1

F=X+<: S — = .
T3 13X =, 3X_7°
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X341
E le2: F= dans R(X
xemple XX DT 1) ans R(X)

La partie entiére de F' est nulle. La décomposition a priori s’écrit :

a b cX +d eX+f

F=2
X X1 Xyl (X2

ol a,b,c,d, e, f sont des nombres réels & déterminer.
On multiplie F par (X2 + 1)? puis on évalue en # = i. On obtient e = 1 et f = 0.
On simplifie et on obtient :

1 _a . b +cX+d
X(X-1)(X2+1) X X-1 X241

N[

On multiplie alors par X2 + 1 et on évalue en x = i. On obtient : ¢ = % et d=—=.

On multiplie les deux membres par X puis on passe a la limite quand x — +o00. Ceci
donne : a 4+ b+ ¢ = 0. De méme, si on multiplie les deux membres par X puis on évalue
en x = 0, on trouve a = —1. On en déduit que b = 1/2.

On obtient donc la décomposition suivante :

o Lo 1 X -1 N X
X 20X 1) 2(X24+1) (X241)%
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