
Polynômes & Fractions Rationnelles

0.1 Polynômes, opérations sur les polynômes
Dans tout ce chapitre, on notera K = R ou C.

Définition 0.1. Un polynôme (à une indéterminée) à coefficients dans K est une suite
P = (ak)k≥0 d’éléments de K nulle à partir d’un certain rang, c’est-à-dire telle qu’il existe
n ∈ N tel que ak = 0 pour tout k > n. Les nombres ak s’appellent les coefficients de P .

Remarque 0.2. 1. Deux polynômes sont égaux si et seulement si leurs coefficients
respectifs sont égaux.

2. Lorsque tous les coefficients de P sont nuls, on dit que P est le polynôme nul et
on note P = 0.

Définition 0.3. Soit P un polynôme non nul. Le plus grand entier k tel que ak 6= 0 est
appelé le degré de P . On le note degP . Par convention deg 0 = −∞.

Soit P = (ak)k≥0 un polynôme non nul et n ∈ N tel que ak = 0 pour tout k > n. On
notera désormais :

P = anX
n + · · ·+ a1X + a0.

Si degP = n, le terme anXn est appelé monôme de plus haut degré de P . Le coefficient
an est appelé le coefficient dominant de P . Si an = 1, P est appelé un polynôme
unitaire.

On appelle polynôme constant tout polynôme de la forme a0, c’est-à-dire tout po-
lynôme dont les coefficients sont nuls à partir du rang 1.

Notation. On note K[X] l’ensemble des polynômes à coefficients dans K. Pour N ∈ N,
on note aussi KN [X] l’ensemble des polynômes de degré ≤ N :

KN [X] = {aNXN + · · ·+ a0 : ai ∈ K} .

Remarque 0.4. On peut identifier l’ensemble des polynômes constants à K et donc
identifier K à un sous-ensemble de K[X] : K ⊂ K[X].

Définition 0.5 (Opérations élémentaires). Soient P,Q ∈ K[X] deux polynômes, λ ∈ K.
On note :

P =

p∑
k=0

akX
k, Q =

q∑
k=0

bkX
k.

On note ak = 0 pour tout k > p et bk = 0 pour tout k > q. On définit alors :

P +Q =

max(p,q)∑
k=0

(ak + bk)X
k
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la somme des polynômes P et Q. C’est le polynôme associé à la suite (ak + bk)k≥0.

PQ =

p+q∑
k=0

( ∑
i+j=k

aibj

)
Xk,

le produit des polynômes P et Q. C’est le polynôme associé à la suite (
∑

i+j=k aibj)k≥0.

λP =

p∑
k=0

λakX
k,

le produit du scalaire λ et du polynôme P . C’est le polynôme associé à la suite (λak)k≥0.

Exemple. (X2 + 2X) + (X3 +X2 + 1) = X3 + 2X2 + 2X + 1
(X2 +X)(X + 1) = X3 + 2X2 +X
3(X2 + 2X + 5) = 3X2 + 6X + 15

On définit alors les puissances d’un polynôme P par récurrence en posant :

P 0 = 1 et P n = P n−1P pour tout n ≥ 1

Le monômeX = (0, 1, 0, 0, . . . , ) est appelée l’indéterminée. On a alorsXn = (δkn)k≥0 où
δkn = 1 si k = n et δkn = 0 si k 6= n. Ceci justifie le choix de l’écriture anXn+· · ·+a1X+a0
pour un polynôme (ak)k≥0 de degré au plus n.

Soient P , Q, et R des polynômes. On a :
� (P +Q) +R = P + (Q+R) : la loi + est associative,
� P +Q = Q+ P : la loi + est commutative,
� 0 + P = P : 0 est un neutre pour la loi +,
� P + (−1)P = 0 : tout élément de K[X] admet un inverse pour la loi +.
On dit alors que (K[X],+) est un groupe commutatif.

� (PQ)R = P (QR) : la loi x est associative,
� PQ = QP : la loi x est commutative,
� 1 · P = P : 1 est un neutre pour pour la loi x,
� P (Q+R) = PQ+ PR : la loi x est distributive par rapport à la loi +.
On dit alors que (K[X],+, x) est un anneau commutatif.

Proposition 0.6. (Formule du binôme de Newton) Soient P,Q ∈ K[X] et n ∈ N. Alors :

(P +Q)n =
n∑
k=0

(
n

k

)
P n−kQk .

Démonstration. La preuve est la même que pour la formule du binôme de Newton dans
K : par récurrence sur n ≥ 0 en utilisant les règles de calcul sur les opérations dans
K[X].

Proposition 0.7. Soient P,Q ∈ K[X]. On a :

deg(P +Q) ≤ max(degP, degQ) et deg(PQ) = degP + degQ .

De plus, si degP 6= degQ, on a deg(P +Q) = max(degP, degQ).
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Démonstration. Prouvons d’abord l’inégalité pour le degré de la somme. Si P = Q = 0,
alors P +Q = 0 et on a deg(P +Q) = max(degP, degQ) = −∞. Supposons à présent que
au moins un des deux polynômes P ou Q est non nul. On note n = max(degP, degQ) et
on a n ∈ N. On peut écrire :

P =
n∑
k=0

akX
k, Q =

n∑
k=0

bkX
n.

On obtient P + Q =
∑n

k=0(ak + bk)X
k, ce qui prouve deg(P + Q) ≤ n. Le coefficient de

degré n de P + Q est an + bn. Supposons par exemple degP 6= degQ. Si degP > degQ,
on a an 6= 0 et bn = 0 donc an + bn = an 6= 0 et deg(P + Q) = n. Le cas degP < degQ
est similaire.

Montrons à présent l’égalité pour le degré du produit. Si P = 0 ou Q = 0, alors
PQ = 0 et on a deg(PQ) = −∞ = degP + degQ, où la dernière égalité vient du fait que
la somme de −∞ et de N ∈ {−∞} ∪ N vaut −∞. Supposons à présent que P et Q sont
non nuls. On écrit :

P =

p∑
k=0

akX
k , Q =

q∑
k=0

bkX
k ,

où p et q sont les degrés respectifs de P et Q (en particulier ap et bq sont non nuls). On a
alors PQ =

∑p+q
k=0

(∑
i+j=k aibj

)
Xk, ce qui prouve deg(PQ) ≤ p+ q = degP + degQ. Le

coefficient de degré p+q de PQ est apbq 6= 0, et donc deg(PQ) = p+q = degP+degQ.

L’inégalité dans la proposition précédente peut être stricte comme le montre l’exemple
suivant. Avec P = X, Q = −X + 1, P +Q = 1, on a :

deg(P +Q) = 0 6= 1 = max(degP, degQ) .

Corollaire 0.8. 1. ∀A,B ∈ K[X], AB = 0⇒ (A = 0 ou B = 0)

2. ∀A,B,C ∈ K[X], (AC = BC et C 6= 0)⇒ A = B

Démonstration. 1. Par contraposée. Si A et B sont non nuls, alors degA ∈ N et
degB ∈ N. La proposition précédente donne donc deg(AB) = degA + degB ∈ N
et donc AB 6= 0.

2. Si AC = BC, on a (A − B)C = 0 et il suffit d’utiliser le point précédent pour
obtenir A−B = 0.

Définition 0.9. Soit P =
∑n

k=0 akX
k ∈ K[X]. La fonction

fP : K→ K

x 7→
n∑
k=0

akx
k = a0 + a1x+ · · ·+ anx

n.

est appelée application polynomiale associée au polynôme P .

On appellera application polynomiale sur K toute application f : K → K telle qu’il
existe P ∈ K[X] tel que f = fP . Dans la pratique, on écrira souvent P (x) pour fP (x).
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Remarque 0.10. Lorsque K = R ou C, si l’application polynomiale fP est identiquement
nulle alors on peut montrer que tous les coefficients ak sont nuls et donc P = 0 (exercice :
le faire). En particulier, un polynôme non nul définit une application non nulle.

Proposition 0.11. Soient P,Q ∈ K[X] et λ, x ∈ K. Alors :

(P +Q)(x) = P (x) +Q(x) , (PQ)(x) = P (x)Q(x) et (λP )(x) = λP (x) .

Démonstration. Immédiat.

Définition 0.12. (Composée de deux polynômes) Soient P =
∑n

k=0 akX
k ∈ K[X] et

Q ∈ K[X]. On définit :

P ◦Q = P (Q) =
n∑
k=0

akQ
k .

Exemple. Si P = X5 +X + 1 et Q = X2, on a P (Q) = X10 +X2 + 1.

Proposition 0.13. Soient P et Q deux polynômes non constants. Alors on a :

deg(P ◦Q) = deg(P ) · deg(Q) .

Démonstration. Exercice.

0.2 Dérivation et formule de Taylor
Définition 0.14. Soit P =

∑n
k=0 akX

k ∈ K[X]. On appelle polynôme dérivé de P le
polynôme P ′ suivant :

P ′ =
n∑
k=1

kakX
k−1 si degP ≥ 1 et P ′ = 0 sinon .

Proposition 0.15. Soit P ∈ K[X].
1. si degP ≥ 1, alors on a : deg(P ′) = deg(P )− 1

2. si degP < 1, alors P ′ = 0 et deg(P ′) = −∞

Démonstration. Immédiat.

Proposition 0.16. Soient P,Q ∈ K[X] et λ, µ ∈ K. Alors on a :
1. (λP + µQ)′ = λP ′ + µQ′

2. (PQ)′ = P ′Q+ PQ′

Démonstration. Exercice.

On définit par récurrence les polynômes dérivés successifs de P . Par convention, P (0) =
P et P ′ = P (1). Pour k ≥ 2, on note P (k) = (P (k−1))′.

Proposition 0.17. Soit P =
∑n

j=0 ajX
j un polynôme de degré n.

Si k ≤ n, P (k) =
∑n

j=k ajj(j − 1) · · · (j − k + 1)Xj−k =
∑n

j=k aj
j!

(j−k)!X
j−k

Si k > n, P (k) = 0.
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Démonstration. Immediat par récurrence.

Proposition 0.18. Soient P ∈ K[X] et k ∈ N. Alors on a :
1. si degP ≥ k, alors on a : deg(P (k)) = deg(P )− k
2. si degP < k, alors P (k) = 0 et deg(P (k)) = −∞

Démonstration. Immédiat.

Proposition 0.19. Soient P,Q ∈ K[X], λ, µ ∈ K et n ∈ N. Alors on a :
1. (λP + µQ)(n) = λP (n) + µQ(n)

2. (Formule de Leibniz)

(PQ)(n) =
n∑
k=0

(
n

k

)
P (k)Q(n−k)

Démonstration. 1. Immédiat.
2. Par récurrence sur n (exercice).

Proposition 0.20. (Formule de Taylor) Soient P ∈ K[X] de degré n ≥ 0 et α ∈ K. On
a alors :

P =
n∑
k=0

P (k)(α)

k!
(X − α)k

Démonstration. On commence par montrer la formule pour le monôme Xn. On a :

n∑
k=0

(Xn)(k)(α)

k!
(X − α)k =

n∑
k=0

n(n− 1) · · · (n− k + 1)αn−k

k!
(X − α)k

=
n∑
k=0

(
n

k

)
αn−k(X − α)k = (X − α + α)n = Xn

en utilisant la formule du binôme de Newton. Considérons maintenant P =
∑n

p=0 apX
p ∈

K[X]. En utilisant le cas précédent, on obtient :

n∑
k=0

P (k)(α)

k!
(X − α)k =

n∑
k=0

n∑
p=0

ap
(Xp)(k)(α)

k!
(X − α)k

=
n∑
p=0

ap

n∑
k=0

(Xp)(k)(α)

k!
(X − α)k =

n∑
p=0

apX
p = P .
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0.3 Arithmétique sur les polynômes
Définition 0.21. Soient A,B ∈ K[X]. On dit que B divise A (et on note B | A) s’il
existe C ∈ K[X] tel que A = BC.

Exemple. B = X2 divise A = (X − 1)X3(X + 2). En effet, A = BC où on note
C = (X − 1)X(X + 2).

Remarque. 1. Si B | A avec A 6= 0, alors degB ≤ degA. En effet, il existe alors
C ∈ K[X] non nul tel que A = BC et donc :

degA = degB + degC ≥ degB .

2. Soient A,B,C ∈ K[X]. Si C | A et C | B, alors C | AP + BQ pour tous P,Q ∈
K[X].

3. Soient A,B ∈ K[X]. Alors on a : (A | B et B | A) ssi il existe λ ∈ K∗ tel que
A = λB (exercice : le prouver). On dit alors que A et B sont associés.

Théorème 0.22 (Division euclidienne). Soient A,B ∈ K[X] tels que B 6= 0. Il existe
alors un unique couple (Q,R) ∈ (K[X])2 tel que :

A = QB +R et degR < degB.

Les polynômes Q et R sont appelés les quotient et reste de la division euclidienne de
A par B.

Démonstration. Commençons par prouver l’unicité. Supposons qu’il existe Q, Q̃, R, R̃ ∈
K[X] tels que :

A = QB +R = Q̃B + R̃ avec degR < degB et deg R̃ < degB .

On en déduit que (Q − Q̃)B = R̃ − R. Par l’absurde, supposons que Q 6= Q̃. Alors
deg((Q− Q̃)B) ≥ degB, tandis que deg(R̃ − R) < degB, contradiction. Ainsi Q = Q̃ et
on déduit que R = R̃.

On montre à présent l’existence. Notons B =
∑p

k=0 bkX
k où p = degB ≥ 0 (puisque

B 6= 0). Si degB = 0, le polynôme B est un polynôme constant non nul et il suffit de
prendre Q = A/b0 et R = 0. On peut donc supposer p > 0 dans la suite. On montre par
récurrence sur n ≥ 0 la propriété (Hn) suivante.

(Hn) : Pour tout A ∈ Kn[X], il existe (Q,R) ∈ (K[X])2 tel que A = QB+R et degR < p.

� Initialisation. (Hn) est vraie pour tout n < p : en effet, si degA ≤ n < p, il suffit
de prendre Q = 0 et R = A.
� Hérédité. Supposons à présent que (Hn) est vraie pour un certain entier n ≥ p−1

et montrons que (Hn+1) est vraie.

Soit A =
∑n+1

k=0 akX
k ∈ Kn+1[X]. On considère alors le polynôme suivant :

Ã = A− an+1

bp
·Xn+1−p ·B .
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On remarque que Ã ∈ Kn[X]. On peut donc appliquer l’hypothèse de recurrence
(Hn) au polynôme Ã : il existe (Q̃, R̃) ∈ (K[X])2 tel que Ã = Q̃B+R̃ et deg R̃ < p.
On pose alors :

Q = Q̃+
an+1

bp
·Xn+1−p et R = R̃ ,

et on a alors A = BQ+R. On a prouvé que (Hn+1) est vraie.
Par application du principe de récurrence, la propriété (Hn) est vraie pour tout n ≥ 0.

Corollaire 0.23. Pour tous P ∈ K[X] et α ∈ K, on a :

P (α) = 0 si et seulement si X − α | P .

Démonstration. La division euclidienne de P par X − α s’écrit :

P = (X − α)Q+R avec degR < 1

En particulier R est un polynôme constant. On évalue en x = α et on obtient P (α) = R.
On en déduit que P (α) = 0 ssi R = 0 ssi X − α | P .

Exemple. On peut effectuer la division euclidienne de deux polynômes en la posant,
comme une division d’entiers. Dans l’exemple suivant, on calcule la division euclidienne
de A = 6X3 − 2X2 +X + 3 par B = X2 −X + 1.

6X3 − 2X2 +X + 3 X2 −X + 1

6X + 4− 6X3 + 6X2 − 6X

4X2 − 5X + 3
− 4X2 + 4X − 4

−X − 1

On obtient le quotient Q = 6X + 4 et le reste R = −X − 1.

Proposition 0.24. Soient A,B ∈ K[X] tels que (A,B) 6= (0, 0). L’ensemble des degrés
des diviseurs communs à A et B est une partie non vide et majorée de N.

Démonstration. Comme 1 divise tous les polynômes, cet ensemble contient deg 1 = 0 et
est donc non vide. De plus, comme le polynôme nul ne divise que lui-même, il n’est pas
diviseur commun, et l’ensemble considéré est donc inclus dans N. Enfin, le degré de tout
diviseur commun est majoré par max(degA, degB).

Il existe donc un diviseur commun à A et B de degré maximal. Ceci conduit à la
définition suivante :

Définition 0.25. Soient A et B deux polynômes de K[X] tels que (A,B) 6= (0, 0). Tout
diviseur commun à A et B de degré maximal est appelé un plus grand diviseur com-
mun (PGCD) de A et B.
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Remarque 0.26. Un PGCD de deux polynômes non tous deux nuls est non nul, car son
degré est un entier naturel.

Remarque 0.27. Si D est un PGCD de A et B, alors λD est aussi un PGCD de A et B
pour tout λ ∈ K∗. On montrera qu’en fait, tout PGCD de A et B est de cette forme.

Proposition 0.28. Soient A,B ∈ K[X] tel que B 6= 0. Si R est le reste de la division
euclidienne de A par B, alors l’ensemble des diviseurs communs à A et B est égal à
l’ensemble des diviseurs communs à B et R. En particulier, tout PGCD de A et B est
aussi un PGCD de B et R et vice versa.

Démonstration. On écrit la division euclidienne de A par B : A = BQ + R. Soit D un
diviseur commun à A et B : D | A et D | B. Il existe des polynômes Ã et B̃ tels que
A = DÃ et B = DB̃. En remplaçant, on obtient :

R = A−BQ = DÃ−QDB̃ = D(Ã−QB̃),

donc D | R. Réciproquement, si B = DB̃ et R = DR̃, alors A = BQ+R = D(QB̃ + R̃),
donc D | A.

Proposition 0.29. Soient A,B ∈ K[X] tels que (A,B) 6= (0, 0). Soit D un PGCD de A
et B. On a alors :

∀P ∈ K[X] , (P | A et P | B)⇐⇒ P | D

Démonstration. Pour un polynôme P , notons D(P ) l’ensemble des diviseurs de P . Mon-
trons par récurrence sur n ∈ N la propriété suivante :

(Hn) : Si A,B ∈ K[X] sont tels que (A,B) 6= (0, 0) et min(degA, degB) < n et si D
est un PGCD de A et B, alors D(A) ∩ D(B) = D(D).

Initialisation : Montrons tout d’abord (H0). Soient A,B ∈ K[X] tels que (A,B) 6=
(0, 0) et min(degA, degB) < 0. Alors exactement un des deux polynômes A et B est nul.
Par exemple, A 6= 0 et B = 0. On a alors D(A) ∩ D(B) = D(A) et donc (H0) est vé-
rifiée puisque tout PGCD de A et B = 0 est de la forme λA avec λ ∈ K∗ (exo : le montrer).

Hérédité : Supposons à présent (Hn) vérifiée pour un certain n ≥ 0 donné. Soient
A,B ∈ K[X] tels que (A,B) 6= (0, 0) et min(degA, degB) < n+ 1 et soit D un PGCD de
A et B. On peut supposer par exemple que degB ≤ degA. Si degB < n, alors on peut
conclure par (Hn). Si degB = n, on a B 6= 0 et donc on peut écrire la division euclidienne
de A par B : A = BQ + R avec degR < degB. En particulier, on a degR < degB = n.
En utilisant la proposition précédente, on a D(A) ∩ D(B) = D(B) ∩ D(R) et D est donc
aussi un PGCD de B et R. En utilisant l’hypothèse de récurrence (Hn), on obtient alors
D(A) ∩ D(B) = D(D). Ceci montre que (Hn+1) est vraie. Par application du principe de
récurrence, la propriété est vérifiée pour tout n, ce qui montre la propriété désirée.

Proposition-Définition 0.1. Soient A,B ∈ K[X] tels que (A,B) 6= (0, 0). Soient D1 et
D2 deux PGCD de A et B. Alors, D1 et D2 sont associés, c’est-à-dire qu’il existe λ ∈ K∗
tel que D1 = λD2. En particulier, il existe un unique PGCD unitaire de A et B. On
l’appelle le PGCD de A et B, et on le note PGCD(A,B).
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Démonstration. D’après la proposition précédente, on a D(A)∩D(B) = D(D1) = D(D2),
où on note encore D(P ) l’ensemble des diviseurs de P . On a donc en particulier D1 | D2

et D2 | D1. Il existe donc des polynômes P et Q tels que D1 = PD2 et D2 = QD1, et
alors D1 = PQD1. Comme (A,B) 6= (0, 0), on a D1 6= 0 et donc PQ = 1. Les polynômes
P et Q sont donc des polynômes constants non nuls.

En particulier, on en déduit l’existence d’un PGCD unitaire de A et B (il suffit de
prendre un PGCD et de le diviser par son coefficient dominant). L’unicité vient du fait
que deux polynômes unitaires associés sont égaux.

On peut alors obtenir le pgcd deA etB en faisant des divisions euclidiennes successives,
comme avec les entiers : c’est l’algorithme d’Euclide.

Algorithme d’Euclide.
1. Poser R0 = A et R1 = B.
2. Tant que R1 6= 0 :

R2 = reste de la division euclidienne de R0 par R1; R0 ← R1, R1 ← R2.

3. Le dernier reste non nul normalisé est le pgcd de A et B.

Lemme 0.30 (Bézout). Soient A,B ∈ K[X] tels que (A,B) 6= (0, 0). Alors il existe deux
polynômes U, V ∈ K[X] tels que :

AU +BV = PGCD(A,B)

Démonstration. On montre par récurrence sur n ∈ N la propriété suivante :

(Hn) : Si A,B ∈ K[X] sont tels que (A,B) 6= (0, 0) et min(degA, degB) < n, alors il
existe deux polynômes U, V ∈ K[X] tels que AU +BV = PGCD(A,B).

Initialisation : Soient A,B ∈ K[X] tels que (A,B) 6= (0, 0) et min(degA, degB) < 0.
Alors un des deux polynômes A et B est nul et l’autre non. Par exemple, supposons A 6= 0
et B = 0. Notons a 6= 0 le coefficient dominant de A. En posant U = 1

a
et V = 0, on a

alors que AU +BV = 1
a
A est le polynôme unitaire associé à A, c’est-à-dire PGCD(A, 0).

La propriété (H0) est donc vraie.

Hérédité : Supposons la propriété (Hn) vérifiée pour un entier n ≥ 0 donné et
montrons que (Hn+1) est vraie. Soient A,B deux polynômes tels que (A,B) 6= (0, 0) et
min(degA, degB) < n+ 1. Supposons par exemple deg(A) ≥ deg(B).

Si min(degA, degB) < n, il suffit d’appliquer (Hn) pour conclure. Sinon, degB = n.
En particulier, B est non nul. On effectue la division euclidienne de A par B :

A = BQ+R avec degR < degB = n .

On peut alors appliquer (Hn) au couple (B,R) : il existe Ũ , Ṽ ∈ K[X] tels que

BŨ +RṼ = PGCD(B,R) .

Mais on a vu précédemment que PGCD(A,B) = PGCD(B,R). On a donc :

PGCD(A,B) = BŨ +RṼ = BŨ + (A−BQ)Ṽ = AṼ +B(Ũ −QṼ ) .
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On pose U = Ṽ et V = Ũ−QṼ et on a donc PGCD(A,B) = AU+BV . Ceci montre que
(Hn+1) est vraie. Par application du principe de récurrence, la propriété (Hn) est vérifiée
pour tout n ∈ N, ce qui permet de conclure.
Exemple. On veut calculer PGCD(A,B) pour A = X4 − 4X3 + 2X2 + X + 6 et B =
X4 − 3X3 + 2X2 +X + 5. L’algorithme d’Euclide donne successivement :

X4 − 4X3 + 2X2 +X + 6 = (X4 − 3X3 + 2X2 +X + 5)× 1 + (−X3 + 1)

X4 − 3X3 + 2X2 +X + 5 = (−X3 + 1)(−X + 3) + (2X2 + 2X + 2)

−X3 + 1 = (2X2 + 2X + 2)(−X/2 + 1/2)

Le dernier reste non nul est un PGCD de A et B donc PGCD(A,B) = X2 +X + 1. En
remontant l’algorithme précédent, on obtient :

(2X2 + 2X + 2) = (−X3 + 1)(X − 3) +B

(2X2 + 2X + 2) = (A−B)(X − 3) +B

(2X2 + 2X + 2) = (X − 3)A+ (4−X)B

X2 +X + 1 = AU +BV avec U =
1

2
X − 3

2
et V = 2− 1

2
X

Définition 0.31. On dit que deux polynômes P et Q de K[X] non tous les deux nuls sont
premiers entre eux si PGCD(P,Q) = 1, c’est-à-dire si leurs seuls diviseurs communs
sont les polynômes constants non nuls.
Remarque 0.32. Soient A,B,C ∈ K[X] non nuls. On a alors : PGCD(A,B) = C si et
seulement si il existe des polynômes Ã et B̃ tels que A = ÃC, B = B̃C avec Ã et B̃
premiers entre eux (exercice : le montrer).
Exemple. X2− 1 et (X + 1)(X + 2) ne sont pas premiers entre eux puisque leur PGCD
unitaire est X + 1. A l’inverse X2 + 1 et (X + 1)(X + 2) sont premiers entre eux.
Proposition 0.33. Soient A,B ∈ K[X]. Alors A et B sont premiers entre eux si et
seulement si il existe U, V ∈ K[X] tels que AU +BV = 1.
Démonstration. Le sens direct est une conséquence immédiate du lemme de Bézout. Mon-
trons la réciproque. Supposons qu’il existe U, V ∈ K[X] tels que AU+BV = 1. Alors tout
diviseur commun à A et B divise aussi AU et BV et donc AU + BV = 1. Le polynôme
D est donc constant non nul, ce qui permet de conclure.
Corollaire 0.34. Soient A,B,C ∈ K[X] tels que A et B sont premiers entre eux, et A
et C sont premiers entre eux. Alors A et BC sont premiers entre eux.
Démonstration. Si A et B sont premiers entre eux et A et C sont premiers entre eux,
alors d’après la proposition précédente il existe U, V, Ũ , Ṽ ∈ K[X] tels que AU +BV = 1
et AŨ + CṼ = 1. En multipliant les deux égalités précédentes, on obtient :

1 = (AU +BV )(AŨ + CṼ ) = AÛ +BCV̂

où l’on a noté Û = UŨA+BV Ũ+UCṼ et V̂ = V Ṽ . Alors, toujours d’après la proposition
précédente, les polynômes A et BC sont premiers entre eux.
Lemme 0.35 (Lemme de Gauss). Soient A,B,C ∈ K[X]. Si A divise BC et si A et B
sont premiers entre eux, alors A divise C.
Démonstration. Supposons que A divise BC et que A et B sont premiers entre eux. Il
existe donc deux polynômes U et V tels que AU + BV = 1. En particulier, on a alors
AUC + BV C = C. Comme A | BC, il existe Q ∈ K[X] tel que BC = AQ. On a donc
AUC +BV C = A(UC + V Q) = C et donc A | C.
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0.4 Racines d’un polynôme
Définition 0.36. Soient P ∈ K[X] et r ∈ K. On dit que r est racine de P si P (r) = 0.

Définition 0.37. Soient P ∈ K[X] et r ∈ K. L’ordre de multiplicité de r dans P
est l’unique entier m ≥ 0 tel que (X − r)m divise P et (X − r)m+1 ne divise pas P . Par
convention, l’ordre de multiplicité de tout r dans P = 0 est égal à +∞.

Notons que r est une racine de P si et seulement si m ≥ 1. Si l’ordre de multiplicité m
est 1 (resp. 2, resp. ≥ 2), on dit que la racine r est simple (resp. double, resp.multiple).

Exemple. Le polynôme (X−1)2(X−2)(X−3) a 1 comme racine double et 2 et 3 comme
racines simples.

Proposition 0.38. Un polynôme non nul de degré n a au plus n racines dans K.

Démonstration. On procède par récurrence sur l’entier n. Un polynôme constant non nul
P de degré n = 0 n’a pas de racines. Supposons la propriété vérifiée pour les polynômes
de degré ≤ n, où n ≥ 0. Soit P un polynôme non nul de degré n + 1. Si P n’a pas de
racine, la propriété est vérifiée. Sinon, soit r une racine de P . Le polynôme P peut donc
s’écrire P = (X − r)Q, où Q est un polynôme de degré degQ = n. Par hypothèse de
récurrence Q a au plus n racines, on en déduit que P a au plus n+ 1 racines.

Proposition 0.39. Soit P ∈ K[X] non nul et soit r ∈ K une racine de P . La multiplicité
m de la racine r est l’unique entier m tel que :

P (r) = P ′(r) = · · · = P (m−1)(r) = 0 et P (m)(r) 6= 0.

Démonstration. Soit r une racine de multiplicité m de P . Alors P = (X − r)mQ avec
Q(r) 6= 0. En dérivant P , on obtient :

P ′ = m(X − r)m−1Q+ (X − r)mQ′ = (X − r)m−1(mQ+ (X − r)Q′) .

P ′ est de la forme (X − r)m−1Q1 avec Q1 = mQ + (X − r)Q′. En particulier Q1(r) =
mQ(r) 6= 0. Donc P (r) = P ′(r) = 0 si et seulement si m > 1.

En dérivant k fois en utilisant la formule de Leibniz, on obtient que pour tout k < m,

P (k) = (X − r)m−kQk

avec Qk(r) = m(m− 1) . . . (m− k + 1)Q(r) 6= 0, et

P (m) = Qm avec Qm(r) = m!Q(r) 6= 0.

Donc pour tout k < m, P (k)(r) = 0, alors que P (m)(r) = m!Q(r) 6= 0.
Réciproquement, supposons que P (r) = P ′(r) = · · · = P (m−1)(r) = 0 et P (m)(r) 6= 0.

Soit n la multiplicité de r. D’après ce qui précède, on a :

P (r) = · · · = P (n−1)(r) = 0 et P (n)(r) 6= 0.

Ceci montre que m = n.

Exemple. Soit P = X5−X4−6X3+14X2−11X+3. On a alors P ′ = 5X4−4X3−18X2+
28X − 11, P ′′ = 20X3 − 12X2 − 36X + 28, P (3) = 60X2 − 24X − 36, P (4) = 120X − 24.
On a donc P (1) = 1 − 1 − 6 + 14 − 11 + 3 = 0, P ′(1) = 5 − 4 − 18 + 28 − 11 = 0,
P ′′(1) = 20−12−36+28 = 0, P (3)(1) = 60−24−36 = 0 et P (4)(1) = 120−24 = 96 6= 0.
Ceci montre que 1 est racine de P de multiplicité 4.
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0.5 Décomposition en produit de polynômes irréduc-
tibles

Définition 0.40. Un polynôme non constant P ∈ K[X] est irréductible (sur K) si
les seuls diviseurs de P sont les polynômes constants non nuls λ (où λ ∈ K∗) et les
polynômes λP associés à P (où λ ∈ K∗). Ainsi un polynôme irréductible est un polynôme
non constant P tel que :

∀A,B ∈ K[X] , P = AB ⇒ (degA = 0 ou degB = 0)

Remarque 0.41. La définition précédente est l’analogue des nombres premiers pour
l’arithmétique dans Z.

Exemple. Tout polynôme de degré 1 est irréductible. En effet, si P de degré 1 se factorise
P = AB, alors on a : 1 = degP = degA+degB. Comme degA et degB sont des entiers,
on en déduit que degA = 0 ou degB = 0, c’est-à-dire A est constant ou B est constant.

Exemple. X2 + 1 n’est pas irréductible sur C puisque X2 + 1 = (X − i)(X + i).

Exemple. En revanche, X2 + 1 est irréductible sur R. En effet, X2 + 1 n’a pas de racine
réelle donc n’admet aucun diviseur de degré 1 dans R[X]. Les seuls diviseurs de X2 + 1
sont donc les polynômes constants non nuls et les polynômes de la forme λ(X2 + 1) avec
λ ∈ R∗. Le polynôme X2 + 1 est donc irréductible. Plus généralement, tout polynôme réel
de degré 2 avec discriminant strictement négatif (donc sans racine réelle) est irréductible.

Lemme 0.42 (Lemme d’Euclide). Soit P ∈ K[X] irréductible et A,B ∈ K[X]. Si P | AB
alors P | A ou P | B.

Démonstration. Si P | A, alors la conclusion est vérifiée. Si P - A alors les polynômes A et
P sont premiers entre eux. Par le lemme de Bézout il existe U, V tels que AU + PV = 1.
Multiplier par B donne AUB + PV B = B. Comme P | AB, on obtient que P | AUB.
Comme P divise aussi PV B, le polynôme P divise la somme AUB + PV B = B.

Le théorème suivant est l’analogue du théorème fondamental de l’arithmétique :

Théorème 0.43 (Factorisation en produit de polynômes irréductibles). Tout polynôme
P ∈ K[X] \ {0} s’écrit

P = λPα1
1 · · ·P

αN
N ,

où λ ∈ K∗, N ∈ N, les Pi sont des polynômes irréductibles unitaires deux à deux distincts
et les αi sont des entiers strictement positifs.

Cette décomposition est unique à réarrangement près.

Démonstration. On prouve par récurrence sur n ∈ N la propriété suivante :

(Hn) : Pour tout polynôme P non nul tel que degP ≤ n, il y a existence et unicité
d’une factorisation en produit de polynômes irréductibles.

Initialisation : Si P = a0 où a0 6= 0, il suffit de prendre λ = a0 et N = 0 et on a bien
P = λ. L’unicité est claire. Ceci montre (H0).
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Hérédité : Supposons (Hn) vraie. Montrons (Hn+1). Soit un polynôme P de degré
≤ n + 1. Si degP < n, il suffit d’utiliser (Hn). Supposons à présent degP = n + 1.
Commençons par prouver l’existence d’une factorisation.

Si P est irréductible, on choisit λ égal au coefficient dominant de P , on prend N = 1,
P1 = 1

λ
P et α1 = 1.

Supposons à présent P non irréductible. Il peut donc être écrit sous la forme P = QR
où Q et R sont non constants. Comme degP = degQ + degR, on a degQ ≤ n et
degR ≤ n. On applique alors l’hypothèse de récurrence (Hn) à Q et à R, et on peut donc
factoriser Q et R :

Q = λQQ
β1
1 · · ·Q

βL
L et R = λRR

γ1
1 · · ·R

γM
M

où λQ, λR ∈ K∗, L,M ≥ 1, les Qi et Rj sont irréductibles unitaires et les βi et γj sont des
entiers strictement positifs. On a alors :

P = (λQQ
β1
1 · · ·Q

βL
L ) (λRR

γ1
1 · · ·R

γM
M ),

En regroupant les facteurs communs, on obtient bien une décomposition de la forme :

P = λPα1
1 · · ·P

αN
N .

où λ = λQ · λR ∈ K∗, N ≥ 1, les Pi sont irréductibles unitaires deux à deux distincts avec
{P1, . . . , PN} = {Q1, . . . , QL, R1, . . . , RM} et les αi sont des entiers strictement positifs.
Ceci prouve l’existence.

Montrons maintenant l’unicité. Supposons que P admette deux factorisations en pro-
duits de polynômes irréductibles :

P = λPα1
1 · · ·P

αN
N = µSa11 · · ·S

aK
K

où λ, µ ∈ K∗, N,K ≥ 1, les Pi et Sj sont irréductibles unitaires et les αi et aj sont des
entiers positifs. Alors S1 divise le produit Pα1

1 · · ·P
αN
N . Par le lemme d’Euclide, S1 divise

un des polynômes Pi. Comme S1 et Pi sont irréductibles et unitaires, on en déduit que
S1 = Pi. On peut alors diviser les deux décompositions ci-dessus par Pi = S1. L’hypothèse
de récurrence (Hn) donne l’unicité de la factorisation pour le quotient de P par Pi = S1.
En multipliant par Pi = S1, on obtient l’unicité de la factorisation pour P .

Ceci prouve (Hn+1). Par application du principe de récurrence, la propriété (Hn) est
vérifiée pour tout n ∈ N, ce qui permet de conclure.

Remarque 0.44. Les diviseurs de P dans K[X] sont alors les polynômes de la forme
µP β1

1 · · ·P
βN
N , où µ ∈ K∗ et les βi sont des entiers tels que 0 ≤ βi ≤ αi.

On admettra le théorème suivant, appelé théorème de d’Alembert-Gauss ou encore
théorème fondamental de l’algèbre :

Théorème 0.45 (Théorème de d’Alembert-Gauss). Tout polynôme non constant de C[X]
admet une racine dans C.

Corollaire 0.46. Les polynômes irréductibles dans C[X] sont les polynômes de degré 1.
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Démonstration. On a déjà vu que les polynômes de degré 1 sont irréductibles. Récipro-
quement, soit P ∈ C[X] irréductible. D’après le théorème de d’Alembert-Gauss, P admet
une racine r dans C. Alors X − r divise P . Comme P est irréductible, il existe λ ∈ C∗ tel
que P = λ(X − r).

Corollaire 0.47. Tout polynôme non constant P ∈ C[X] s’écrit sous la forme :

P = λ
N∏
i=1

(X − ri)αi

où λ ∈ C∗ est le coefficient dominant de P , N ≥ 1, r1, . . . , rN ∈ C sont les racines deux
à deux distinctes de P dans C de multiplicités respectives α1, . . . , αN ≥ 1.

Démonstration. C’est une conséquence immédiate du corollaire précédent et du théorème
de factorisation en produit de polynômes irréductibles.

Corollaire 0.48. Les polynômes irréductibles dans R[X] sont les polynômes de degré 1
et les polynômes de degré 2 avec discriminant strictement négatif.

Démonstration. On a déjà vu que les polynômes de degré 1 et les polynômes de degré 2
avec discriminant strictement négatif sont irréductibles sur R.

Soit P ∈ R[X] irréductible sur R, et supposons que degP ≥ 2. D’après le théorème de
d’Alembert-Gauss, P admet une racine r dans C. Mais puisque P est un polynôme réel,
on a P = P et donc :

P (r) = P (r) = P (r) = 0 = 0

et donc r est aussi une racine de P . Comme P est irréductible, on a r /∈ R (sinon X − r
diviserait P dans R[X]. Comme P est irréductible et de degré ≥ 2, on obtiendrait une
contradiction). Ceci montre r 6= r. Finalement, P admet dans C[X] comme diviseur le
polynôme (X − r)(X − r). Il existe donc Q ∈ C[X] tel que :

P = (X − r)(X − r)Q = (X2 − (r + r)X + rr)Q = (X2 − 2Re(r)X + |r|2)Q

Comme P est un polynôme réel, on obtient que Q est aussi réel. Finalement, comme P
est irréductible, Q est un polynôme constant : Q = λ ∈ R∗. On a donc :

P = λ(X2 − 2Re(r)X + |r|2)

Le polynôme P est donc de degré 2 de discriminant ∆ = 4λ2(Re(r)2 − |r|2) < 0.

Corollaire 0.49. Tout polynôme non constant P ∈ R[X] s’écrit sous la forme :

P = λ ·
N∏
i=1

(X − ri)αi ·
M∏
j=1

(X2 + ajX + bj)
βj

avec λ ∈ R∗, N ∈ N, r1, . . . , rN ∈ R sont les racines deux à deux distinctes de P dans R
de multiplicités respectives α1, . . . , αN ≥ 1, M ∈ N, les couples (a1, b1), . . . , (aM , bM) ∈ R2

deux à deux distincts sont tels que a2j − 4bj < 0 pour tout 1 ≤ j ≤M et β1, . . . , βM ≥ 1.

Démonstration. C’est une conséquence immédiate du corollaire précédent et du théorème
de factorisation en produit de polynômes irréductibles.
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Exemple. On obtient les décompositions en produits de facteurs irréductibles suivantes
pour X4 − 1 :

X4 − 1 = (X − 1)(X − i)(X + 1)(X + i) dans C[X]

= (X − 1)(X + 1)(X2 + 1) dans R[X]

Exemple. On obtient les décompositions en produits de facteurs irréductibles suivantes
pour X4 + 1 :

X4 + 1 = (X − exp(i
π

4
))(X − exp(i

3π

4
))(X − exp(i

5π

4
))(X − exp(i

7π

4
)) dans C[X]

= (X2 −
√

2X + 1)(X2 +
√

2X + 1) dans R[X]

0.6 Fractions rationnelles et décomposition en éléments
simples

0.6.1 Fractions rationnelles

Définition 0.50. Une fraction rationnelle (à coefficients dans K) est le quotient de
deux polynômes, c’est à dire

F =
P

Q
avec P ∈ K[X], Q ∈ K[X] \ {0}.

Remarque 0.51. Voici comment définir rigoureusement la fraction rationnelle F = P/Q.
On peut vérifier que la relation ∼ définie par (P,Q) ∼ (R, S) ssi P S = QR est une
relation d’équivalence sur K[X]×K[X] \ {0}. La fraction rationnelle F = P/Q est alors
la classe d’équivalence de (P,Q).

Notation. On note K(X) l’ensemble des fractions rationnelles à coefficients dans K.

On définit l’addition et la multiplication de fractions rationnelles par :

P

Q
+
R

S
=

P S +QR

QS
,

P

Q
× R

S
=

P R

QS
.

Remarque 0.52. Muni de ces deux opérations, on peut vérifier que K(X) est un corps.

Définition 0.53. Le degré d’une fraction rationnelle F = P
Q

est par définition :

deg(F ) = deg(P )− deg(Q)

Notons que deg(F ) est un élément de Z ∪ {−∞}.

Soit F ∈ K(X) une fraction rationnelle. Alors F peut s’écrire P
Q

où P ∈ K[X] et
Q ∈ K[X] \ {0} sont premiers entre eux. Cette écriture est unique, à une constante
multiplicative près. Elle s’appelle la représentation irréductible de F .
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Définition 0.54. Soit F ∈ K(X) donnée sous forme irréductible P
Q
. On appelle zéros de

F les zéros de P . On appelle pôles de F les zéros de Q. La multiplicité d’un zéro ou d’un
pôle de F est sa multiplicité en tant que zéro de P ou de Q.

Soit F = P
Q

une fraction rationnelle donnée sous forme irréductible. Soit P ⊂ K
l’ensemble des pôles de F . On associe à F la fonction suivante :

fF : K \ P → K

x 7→ P (x)

Q(x)
.

Cette fonction s’appelle l’application rationnelle associée à F . On écrira souvent F (x)
à la place de fF (x).

0.6.2 Décomposition en éléments simples

Voici le résultat principal de cette section :

Théorème 0.55 (Décomposition en éléments simples dans C(X)). Soit

F =
A

B
∈ C(X).

Étant donnée la décomposition en produit de polynômes irréductibles de B :

B = λ(X − r1)α1 × · · · × (X − rN)αN ,

on peut écrire F de manière unique comme somme :

• d’un polynôme E, appelé la partie entière de F , qui est le quotient de la division
euclidienne de A par B,

• d’éléments simples
cij

(X − ri)j
où 1 ≤ i ≤ N , 1 ≤ j ≤ αi, cij ∈ C.

On a alors :

F = E +
N∑
i=1

αi∑
j=1

cij
(X − ri)j

.

Pour prouver le théorème précédent, commençons par prouver le résultat suivant :

Lemme 0.56 (Division suivant les puissances croissantes). Soient A ∈ K[X] et B ∈ K[X]
tel que B(0) 6= 0. Pour tout n ≥ 0 il existe (Q,R) ∈ Kn[X]×K[X] unique tel que :

A = BQ+Xn+1R.

Démonstration. On démontre le lemme par récurrence sur n. Si n = 0, en écrivant :

A = aNX
N + · · ·+ a0 et B = bMX

M + · · ·+ b0,

par hypothèse, on a b0 = B(0) 6= 0. On cherche un polynôme Q de degré au plus 0, donc
constant. Le seul possible est

Q =
a0
b0
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car on a alors (A−BQ)(0) = a0−b0·(a0/b0) = 0, doncX | (A−BQ), et donc A−BQ = XR
pour un certain polynôme R ∈ K[X].

Supposons l’hypothèse satisfaite jusqu’à l’ordre n − 1, avec n ≥ 1. Il existe donc
Qn−1 ∈ Kn−1[X] et Rn−1 ∈ K[X] tels que

A = BQn−1 +XnRn−1.

Procédant comme ci-dessus, on peut écrire :

Rn−1 = λB +XR,

où λ = Rn−1(0)/b0 et R ∈ K[X]. On a donc :

A = B(Qn−1 + λXn) +Xn+1R,

ce qui prouve l’existence de la décomposition à l’ordre n en posant :

Q = Qn−1 + λXn ∈ Kn[X] .

Supposons qu’il y ait un autre couple (Q̃, R̃) convenant. On a alors :

B(Q− Q̃) = Xn+1(R̃−R).

Comme B(0) 6= 0, les polynômes Xn+1 et B sont premiers entre eux. D’après le lemme de
Gauss, Xn+1 divise donc Q− Q̃. Mais comme Q− Q̃ est de degré au plus n, ceci implique
que Q = Q̃ et donc R = R̃. Ceci prouve l’unicité de la décomposition à l’ordre n.

Corollaire 0.57. Soient r ∈ K, A ∈ K[X] et B ∈ K[X] tel que B(r) 6= 0. Pour tout
n ≥ 0, il existe (Q,R) ∈ Kn[X]×K[X] unique tel que :

A = BQ+ (X − r)n+1R.

On peut maintenant conclure la preuve du théorème 0.55 :

Preuve du théorème 0.55. On montre l’existence de la décomposition dans C(X) par ré-
currence sur le nombre N de racines distinctes du dénominateur B.

Quand N = 0, F ∈ C[X]. On prend E = F .
Supposons l’existence établie pour N − 1 pôles distincts, où N ≥ 1. Supposons que :

B = λ(X − r1)α1 × · · · × (X − rN)αN .

où les ri sont distincts deux à deux. D’après le corollaire 0.57 appliqué aux polynômes A
et B̃ = λ(X − r1)α1 × · · · × (X − rN−1)αN−1 avec r = rN et n = αN − 1, on a :

A = B̃Q+ (X − rN)αNR ,

où Q ∈ CαN−1[X] et R ∈ C[X]. On obtient alors :

F =
A

B
=

A

B̃ · (X − rN)αN
=

Q

(X − rN)αN
+
R

B̃
.

Comme degQ ≤ αN − 1, on peut l’écrire (exercice : le vérifier) :

Q = cN1(X − rN)αN−1 + · · ·+ cNαN−1(X − rN) + cNαN ,
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et on obtient donc :

F =

αN∑
j=1

cNj
(X − rN)j

+
R

B̃
.

On applique maintenant l’hypothèse de récurrence à R/B̃, et la preuve de l’existence
est complète.

Pour prouver l’unicité, on peut se ramener au cas où

E +
N∑
i=1

αi∑
j=1

cij
(X − ri)j

= 0,

et on montre que le polynôme E et les coefficients cij sont nuls.
En multipliant cette égalité par (X − rN)αN puis en évaluant en x = rN , on obtient

cNαN = 0. On réitère en multipliant successivement par (X − rN)αN−1, . . ., (X − rN)
puis en évaluant en x = rN , on obtient cNαN = cNαN−1 = · · · = cN1 = 0. En réitérant
successivement le même procédé avec les autres pôles ri, on trouve que tous les coefficients
cij sont nuls. On obtient donc E = 0. Ceci montre l’unicité.

Théorème 0.58 (Décomposition en éléments simples dans R(X)). Soit

F =
A

B
∈ R(X).

Étant donnée la décomposition en produit de polynômes irréductibles de B :

B = λ(X − r1)α1 × · · · × (X − rN)αN × (X2 + a1X + b1)
β1 × · · · × (X2 + aMX + bM)βM ,

on peut écrire F de manière unique comme somme :

• d’un polynôme E, appelé la partie entière de F , qui est le quotient de la division
euclidienne de A par B,

• d’éléments simples de première espèce :

cij
(X − ri)j

,

où 1 ≤ i ≤ N , 1 ≤ j ≤ αi, cij ∈ R,

• d’éléments simples de seconde espèce

dijX + eij
(X2 + aiX + bi)j

,

où 1 ≤ i ≤M , 1 ≤ j ≤ βi, dij, eij ∈ R.

On a alors :

F = E +
N∑
i=1

αi∑
j=1

cij
(X − ri)j

+
M∑
i=1

βi∑
j=1

dijX + eij
(X2 + aiX + bi)j

.

Démonstration. Admis
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En pratique, pour décomposer une fraction rationnelle F en éléments simples :

• on commence par écrire F sous forme irréductible F = P/Q
• on calcule d’abord la partie entière E de F : c’est le quotient de la division eucli-

dienne de P par Q
• on factorise Q en produit de polynômes irréductibles
• on écrit la forme a priori de la décomposition en éléments simples cherchée (cf les

théorèmes 0.55 et 0.58)
• pour un pôle r d’ordre α, le coefficient de 1

(X−r)α s’obtient en multipliant par
(X − r)α et en évaluant en X = r

Remarque 0.59. Si r est un pôle simple de F , alors le coefficient de 1
X−r est

P (r)

Q′(r)
.

Remarque 0.60. Pour déterminer les autres coefficients, on peut évaluer en un point,
multiplier par Xk et regarder la limite en +∞. . .

Remarque 0.61. Si on calcule la décomposition en éléments simples sur R et qu’il y
a un polynôme de degré 2 irréductible dans la factorisation de Q, on peut commencer
par calculer la décomposition en éléments simples sur C et ensuite regrouper les parties
polaires correspondant aux pôles conjugués.

Exemple 1 : F =
X4 + 1

X3 − 1
dans C(X)

On calcule la partie entière de F en calculant le quotient de la division euclidienne de
X4 + 1 par X3 − 1. On trouve que la partie entière de F est X. Ensuite on factorise :

X3 − 1 = (X − 1)(X − j)(X − j2)

On en déduit que F se décompose sous la forme :

F = X +
a

X − 1
+

b

X − j
+

c

X − j2

où a, b et c sont trois nombres complexes à déterminer.

On multiplie F par (X − 1). On obtient alors :

X4 + 1

(X − j)(X − j2)
= X(X − 1) + a+

b

X − j
+

c

X − j2

puis on évalue en x = 1. On trouve : a = 2
3
.

On multiplie de même par (X − j) puis on évalue en x = j. Ceci donne b = −1
3
.

On remarque que F = F . Par unicité de la décomposition, on a alors a = a, b = c et
c = b. On a donc c = b = −1

3
. On obtient donc la décomposition suivante :

F = X +
2

3

1

X − 1
− 1

3

1

X − j
− 1

3

1

X − j2
.
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Exemple 2 : F =
X3 + 1

X(X − 1)(X2 + 1)2
dans R(X)

La partie entière de F est nulle. La décomposition a priori s’écrit :

F =
a

X
+

b

X − 1
+
cX + d

X2 + 1
+

eX + f

(X2 + 1)2

où a, b, c, d, e, f sont des nombres réels à déterminer.

On multiplie F par (X2 + 1)2 puis on évalue en x = i. On obtient e = 1 et f = 0.
On simplifie et on obtient :

1

X(X − 1)(X2 + 1)
=

a

X
+

b

X − 1
+
cX + d

X2 + 1
.

On multiplie alors par X2 + 1 et on évalue en x = i. On obtient : c = 1
2
et d = −1

2
.

On multiplie les deux membres par X puis on passe à la limite quand x→ +∞. Ceci
donne : a + b + c = 0. De même, si on multiplie les deux membres par X puis on évalue
en x = 0, on trouve a = −1. On en déduit que b = 1/2.

On obtient donc la décomposition suivante :

F = − 1

X
+

1

2(X − 1)
+

X − 1

2(X2 + 1)
+

X

(X2 + 1)2
.

20


	Polynômes, opérations sur les polynômes
	Dérivation et formule de Taylor
	Arithmétique sur les polynômes
	Racines d'un polynôme
	Décomposition en produit de polynômes irréductibles
	Fractions rationnelles et décomposition en éléments simples
	Fractions rationnelles
	Décomposition en éléments simples


