

Chapter 5: An Introduction to Hilbert Spaces

Exercise 1. Consider the \mathbb{C} -vector space $\mathscr{C}^{\circ}([-1,1],\mathbb{C})$ endowed with the inner product \langle , \rangle defined by

$$\langle f, g \rangle := \int_{-1}^{1} \overline{f(t)} g(t) dt.$$

Let

$$F = \left\{ f \in \mathcal{C}^{\circ}([-1,1],\mathbb{C}) \mid f(t) = f(-t) \quad \forall t \in [-1,1] \right\}.$$

Compute F^{\perp} . Does one have $E = F \oplus F^{\perp}$?

Solution of exercise 1. Let $G := \{ f \in \mathscr{C}^{\circ}([-1,1],\mathbb{C}) \mid f(t) = -f(-t) \mid \forall t \in [-1,1] \}$. All linear combinations of odd functions are odd, and all linear combinations of even functions are even; so F and G are linear subspaces. Suppose that $f \in F$ and $g \in G$. Then $\overline{f}g$ is odd, which gives $\langle f,g \rangle = \int_{-1}^{1} \overline{f(t)}g(t)dt = 0$. So $F \perp G$. And every $f \in \mathscr{C}^{\circ}([-1,1],\mathbb{C})$ can be written as

$$f = f_e + f_o$$
, $f_e \in F$, $f_o \in G$,

where

$$f_e(t) = \frac{1}{2}(f(t) + f(-t)), \quad f_o(t) = \frac{1}{2}(f(t) - f(-t)).$$

So $F \perp G$ and $\mathscr{C}^{\circ}([-1,1],\mathbb{C}) = F \oplus G$ is an orthogonal direct sum decomposition.

Exercise 2. Consider the \mathbb{K} -vector space $\mathbb{K}[x]$, and endow it with the inner product

$$\langle P, Q \rangle = \sum_{n=0}^{+\infty} \frac{1}{n!^2} \overline{P^{(n)}(0)} Q^{(n)}(0).$$

- 1. Prove that \langle , \rangle is a well defined inner product.
- 2. Prove that the subset

$$H = \{ P \in \mathbb{K}[x]/P(1) = 0 \}$$

is a hyperplane and that $H^{\perp} = \{0\}$.

Solution of exercise 2. Assume $\mathbb{K} = \mathbb{C}$.

- 1. Let $P(x) = \sum_{i=0}^{N} a_i x^i$, $Q(x) = \sum_{i=0}^{M} b_i x^i$ with a_i , $b_i \in \mathbb{C}$. Then $\langle P, Q \rangle = \sum_{i=0}^{\min(M,N)} \overline{a_i} b_i$. $\langle P, P \rangle = \sum_{i=0}^{N} |a_i|^2 \geq 0$. "=" if and only if P = 0. Sesquilinear and Hermitian symmetric are easy to check.
- 2. $H = \ker \ell$ where $\ell \in \mathbb{K}[x]^* \setminus \{0\}$ is the linear form defined by

$$\ell(P) := P(1).$$

It is easy to check it is a linear form. Let $P(x) = \sum_{i=0}^{N} a_i x^i$, $H = \{P \in \mathbb{K}[x] \mid \sum_i a_i = 0\}$. We have $x^i - x^{M+1} \in H$ for any $M \in \mathbb{N}$. For any element $Q(x) = \sum_{i=0}^{M} b_i x^i \in H^{\perp}$, the condition $\langle H^{\perp}, Q \rangle = 0$ implies $\langle x^i - x^{M+1}, Q \rangle = b_i = 0$ holds for any i. We conclude that $H^{\perp} = \{0\}$.

Exercise 3. Consider the function $f \in \mathscr{C}^{\circ}([0,2\pi],\mathbb{C})$ defined by

$$f(t) = \begin{cases} t^2 & \text{if } t \in [0, \pi] \\ (t - 2\pi)^2 & \text{if } t \in [\pi, 2\pi]. \end{cases}$$

- 1. Compute the Fourier coefficients of f. (Hint: prove first that $c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} t^2 e^{-int} dt$.)
- 2. Apply Parseval's identity to compute the value of

$$\sum_{n=1}^{+\infty} \frac{1}{n^4}.$$

Solution of exercise 3.

1. We have

$$c_{n}(f) = \frac{1}{2\pi} \langle e_{n}, f \rangle$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} e^{-int} f(t) dt$$

$$= \frac{1}{2\pi} \left(\int_{0}^{\pi} t^{2} e^{-int} dt + \int_{\pi}^{2\pi} (t - 2\pi)^{2} e^{-int} dt \right)$$

$$(\text{Let } u = t - 2\pi) = \frac{1}{2\pi} \left(\int_{0}^{\pi} t^{2} e^{-int} dt + \int_{-\pi}^{0} u^{2} e^{-inu} du \right)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} t^{2} e^{-int} dt$$

$$(-\frac{1}{in} d(e^{-int}) = e^{-int} dt, \& n \neq 0) = -\frac{1}{2\pi in} \left(\int_{-\pi}^{\pi} t^{2} d(e^{-int}) \right)$$

$$(\text{Integration by parts}) = -\frac{1}{2\pi in} (e^{-int} t^{2} \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} e^{-int} 2t dt \right)$$

$$(\text{Integration by parts again}) = \dots$$

$$= \frac{2(-1)^{n}}{n^{2}}.$$

For n = 0, $c_0(f) = \frac{\pi^2}{3}$.

2. By Theorem 2.16: [Parseval identity] For $f \in \mathscr{C}^{\circ}([0, 2\pi], \mathbb{C})$, one has

$$\sum_{n=-\infty}^{+\infty} \left| c_n(f) \right|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt$$

$$\frac{\pi^4}{9} + 2 \sum_{n=1}^{\infty} \left(\frac{2(-1)^n}{n^2} \right)^2 = \sum_{n=-\infty}^{\infty} \left| c_n(f) \right|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^4 dx = \frac{\pi^4}{5}$$
(2)

We have $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{8} \left(\frac{1}{5} - \frac{1}{9} \right) = \frac{\pi^4}{90}$.

Exercise 4. Consider the Hilbert space $\ell^2(\mathbb{N},\mathbb{C})$. Fix $N \in \mathbb{N}$ and consider the map

$$h: \left\{ \begin{array}{ccc} \ell^2(\mathbb{N}, \mathbb{C}) & \to & \mathbb{C} \\ (a_n)_{n \in \mathbb{N}} & \mapsto & \sum_{n=0}^N a_n. \end{array} \right.$$

- 1. Prove that h is a bounded linear functional on $\ell^2(\mathbb{N},\mathbb{C})$.
- 2. Prove that $H := \ker(h)$ is closed.
- 3. Prove that $\ell^2(\mathbb{N},\mathbb{C}) = H \oplus H^{\perp}$.
- 4. Compute H^{\perp} .
- 5. Compute p_H .

Solution of exercise 4. Please read subsection 3.1.1 of chapV of the lecture notes.

- 1. Recall/read Proposition 5.1 of chapV. $|h((a_n)_{n\in\mathbb{N}})| = |\sum_{i=0}^N a_i| = |\sum_{i=0}^N 1 \cdot a_i| \le \sqrt{N+1} ||(a_n)_{n\in\mathbb{N}}||$. (Cauchy-Schwarz inequality applied to $(1, \dots, 1, 0, \dots)$ (1 at first N+1 places, 0 elsewhere) and $(a_n)_{n\in\mathbb{N}}$; $(a_n)_{n\in\mathbb{N}} \in \ell^2$ so $||(a_n)_{n\in\mathbb{N}}|| < \infty$).
- 2. For any $\{x_n\} \subset H$ with $x_n \to x$.

$$h(x) = \lim_{n \to \infty} h(x_n) = 0$$

Thus $x \in H$ and the nullspace is closed.

3. For any $x \in \ell^2(\mathbb{N}, \mathbb{C})$, we decompose x as $x = \left(x - \frac{h(x)}{h(y_0)}y_0\right) + \frac{h(x)}{h(y_0)}y_0$, for any $y_0 \notin H$. We see $x - \frac{h(x)}{h(y_0)}y_0 \in H$ and $\frac{h(x)}{h(y_0)}y_0 \in \operatorname{Span}\left\{y_0\right\}$, thus $\ell^2(\mathbb{N}, \mathbb{C}) = H \bigoplus \operatorname{Span}\left\{y_0\right\}$ (this is true for any linear space). Pick up (wisely) $y_0 = (b_n)_{n \in \mathbb{N}} = (1, \dots, 1, 0, \dots)$, for any $(a_n)_{n \in \mathbb{N}} \in H$, $\langle y_0, (a_n)_{n \in \mathbb{N}} \rangle = \langle (b_n)_{n \in \mathbb{N}}, (a_n)_{n \in \mathbb{N}} \rangle = h((a_n)_{n \in \mathbb{N}}) = 0$. We have $\operatorname{Span}\left\{y_0\right\} \subset H^\perp$, thus $\operatorname{Span}\left\{y_0\right\} = H^\perp$. In general:

Theorem. Let E be a Hilbert space, Y a closed subspace of E, Y^{\perp} the orthogonal complement of Y.

- (a) Y^{\perp} is a closed linear subspace of E;
- (b) Y and Y^{\perp} are complementary subspaces, meaning that every x can be decomposed uniquely as a sum of a vector in Y and in Y^{\perp} ;
- $(c) \left(Y^{\perp} \right)^{\perp} = Y.$
- 4. Done.

5. For
$$y_0 = (1, \dots, 1, 0, \dots)$$
, $p_H(x) = x - \frac{h(x)}{h(y_0)} y_0 = x - (\frac{h(x)}{N+1}, \dots, \frac{h(x)}{N+1}, 0, \dots)$.

Exercise 5. Fix $N \in \mathbb{N}$. Consider the linear form $h: \ell^2(\mathbb{N}, \mathbb{C}) \to \mathbb{C}$ defined by

$$h((a_n)_{n\in\mathbb{N}})=a_N.$$

1. Prove that *h* is continuous.

2. Determine the unique element $u \in \ell^2(\mathbb{N}, \mathbb{C})$ such that

$$\ell(v) = \langle u, v \rangle \quad \forall v \in \ell^2(\mathbb{N}, \mathbb{C}).$$

Solution of exercise 5.

- 1. Set u = (0, ..., 0, 1, 0, ...) (1 at N + 1-th place), $|h((a_n)_{n \in \mathbb{N}})| = |\langle u, (a_n)_{n \in \mathbb{N}} \rangle| \le ||(a_n)_{n \in \mathbb{N}}||$ by Cauchy-Schwarz.
- 2. By Theorem 5.6, *u* is unique.

Exercise 6. Consider the \mathbb{C} -vector space $\mathscr{C}^{\circ}([0,1],\mathbb{C})$ endowed with the inner product \langle , \rangle defined by

$$\langle f, g \rangle := \int_0^1 \overline{f(t)} g(t) dt.$$

Consider the element $\ell \in \mathscr{C}^{\circ}([0,1],\mathbb{C})^*$ defined by

$$\ell(f) = f(0)$$

Prove that ℓ is not continuous.

Solution of exercise 6. Set $H_2 = \operatorname{Ker} \ell$. We have seen in 1.3.2 Second example that $H_2 \oplus H_2^{\perp} \neq \mathscr{C}^0([0, 2\pi], \mathbb{C})$. If ℓ is continuous, by the proof of exercise 4, we will have $H_2 \oplus H_2^{\perp} = \mathscr{C}^0([0, 1], \mathbb{C})$. Contradiction! Or you construct ...

Exercise 9. Consider the \mathbb{R} -vector space $\mathscr{C}^{\circ}([-1,1],\mathbb{R})$ endowed with the inner product \langle , \rangle defined by

$$\langle f, g \rangle := \int_{-1}^{1} f(t)g(t)dt.$$

For any $k \in \mathbb{N}$ set

$$L_n := \frac{1}{2^n n!} \left[\left(x^2 - 1 \right)^n \right]^{(n)} \in \mathbb{R}[x].$$

This is the so-called *n*-th Legendre polynomial.

- 1. For any $n \in \mathbb{N}$. Determine the leading coefficient of L_n .
- **2.** Prove that the family $(L_n)_{n\in\mathbb{N}}$ is an orthogonal family in $\mathscr{C}^{\circ}([-1,1],\mathbb{R})$.
- 3. For any $n \in \mathbb{N}$, compute $||L_n||$.
- 4. Prove that if one applies the Gram-Schmidt process to the family $(x^n)_{n\in\mathbb{N}}$, one obtains the family $\left(\frac{L_n}{\|L_n\|}\right)_{n\in\mathbb{N}}$

Solution of exercise 7.

- 1. The leading coefficient is $\frac{(2n)!}{2^n(n!)^2}$ of x^n .
- 2. Show that if f is indefinitely differentiable on [-1,1], then

$$\int_{-1}^{1} L_n(x) f(x) dx = (-1)^n \frac{1}{2^n n!} \int_{-1}^{1} \left(x^2 - 1 \right)^n f^{(n)}(x) dx$$

(Integration by parts). In particular, L_n is orthogonal to x^m whenever m < n. Hence $\{L_n\}_{n=0}^{\infty}$ is an orthogonal family.

3.

$$||L_n|| = (-1)^n \frac{1}{2^n n!} \int_{-1}^1 (x^2 - 1)^n L_n^{(n)}(x) dx$$

$$= (-1)^n \frac{1}{2^n n!} \int_{-1}^1 (x^2 - 1)^n \frac{d^{2n}}{dx^{2n}} [(x^2 - 1)^n] dx$$

$$= (-1)^n \frac{(2n)!}{2^{2n} (n!)^2} \int_{-1}^1 (x^2 - 1)^n dx$$
(3)

Using gamma functions or Integration by parts *n* time to find this equals $\frac{2}{n+2}$.

4. We can prove that any polynomial of degree n that is orthogonal to $1, x, x^2, ..., x^{n-1}$ is a constant multiple of L_n by comparing dimensions. Thus $\{L_n\}$ is the family obtained by applying the Gram-Schmidt process to $1, x, x^2, ..., x^n, ...$