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Chapter 5: An Introduction to Hilbert Spaces

Exercise 1. Consider the C-vector space C ◦([−1,1],C) endowed with the inner product ⟨,⟩ defined by

⟨f ,g⟩ :=
∫ 1

−1
f (t)g(t)dt.

Let
F =

{
f ∈C ◦([−1,1],C) | f (t) = f (−t) ∀t ∈ [−1,1]

}
.

Compute F⊥. Does one have E = F ⊕F⊥ ?

Solution of exercise 1. Let G :=
{
f ∈C ◦([−1,1],C) | f (t) = −f (−t) ∀t ∈ [−1,1]

}
. All linear combinations of odd

functions are odd, and all linear combinations of even functions are even; so F and G are linear subspaces.
Suppose that f ∈ F and g ∈ G. Then f g is odd, which gives ⟨f ,g⟩ =

∫ 1
−1 f (t)g(t)dt = 0. So F ⊥ G. And every

f ∈C ◦([−1,1],C) can be written as
f = fe + fo, fe ∈ F,fo ∈ G,

where
fe(t) =

1
2

(f (t) + f (−t)), fo(t) =
1
2

(f (t)− f (−t)).

So F ⊥ G and C ◦([−1,1],C) = F ⊕G is an orthogonal direct sum decomposition.

Exercise 2. Consider the K-vector space K[x], and endow it with the inner product

⟨P ,Q⟩ =
+∞∑
n=0

1
n!2

P (n)(0)Q(n)(0).

1. Prove that ⟨,⟩ is a well defined inner product.

2. Prove that the subset
H = {P ∈ K[x]/P (1) = 0}

is a hyperplane and that H⊥ = {0}.

Solution of exercise 2. Assume K = C.

1. Let P (x) =
∑N

i=0 aix
i , Q(x) =

∑M
i=0 bix

i with ai , bi ∈ C. Then ⟨P ,Q⟩ =
∑min(M,N )

i=0 aibi . ⟨P ,P ⟩ =
∑N

i=0 |ai |2 ≥ 0.
“=” if and only if P = 0. Sesquilinear and Hermitian symmetric are easy to check.

2. H = kerℓ where ℓ ∈ K[x]∗\{0} is the linear form defined by

ℓ(P ) := P (1).

It is easy to check it is a linear form. Let P (x) =
∑N

i=0 aix
i , H = {P ∈ K[x] |

∑
i ai = 0}. We have xi−xM+1 ∈H

for any M ∈ N. For any element Q(x) =
∑M

i=0 bix
i ∈H⊥, the condition ⟨H⊥,Q⟩ = 0 implies ⟨xi −xM+1,Q⟩ =

bi = 0 holds for any i. We conclude that H⊥ = {0}.
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Exercise 3. Consider the function f ∈C ◦([0,2π],C) defined by

f (t) =

 t2 if t ∈ [0,π]
(t − 2π)2 if t ∈ [π,2π].

1. Compute the Fourier coefficients of f . (Hint: prove first that cn(f ) = 1
2π

∫ π

−π t
2e−intdt.)

2. Apply Parseval’s identity to compute the value of

+∞∑
n=1

1
n4 .

Solution of exercise 3.

1. We have
cn(f ) =

1
2π
⟨en, f ⟩

=
1

2π

∫ 2π

0
e−intf (t)dt

=
1

2π
(
∫ π

0
t2e−intdt +

∫ 2π

π
(t − 2π)2e−intdt)

(Let u = t − 2π) =
1

2π
(
∫ π

0
t2e−intdt +

∫ 0

−π
u2e−inudu)

=
1

2π

∫ π

−π
t2e−intdt

(− 1
in

d(e−int) = e−intdt,&n , 0) = − 1
2πin

(
∫ π

−π
t2d(e−int)

(Integration by parts) = − 1
2πin

(e−intt2 |π−π −
∫ π

−π
e−int2tdt)

(Integration by parts again) = . . .

=
2(−1)n

n2 .

(1)

For n = 0, c0(f ) =
π2

3
.

2. By Theorem 2.16: [Parseval identity] For f ∈C ◦([0,2π],C), one has

+∞∑
n=−∞

∣∣∣cn(f )
∣∣∣2 =

1
2π

∫ 2π

0
|f (t)|2dt

π4

9
+ 2

∞∑
n=1

(
2(−1)n

n2 )2 =
∞∑

n=−∞

∣∣∣cn(f )
∣∣∣2 =

1
2π

∫ π

−π
x4dx =

π4

5

(2)

We have
∑∞

n=1
1
n4 = π4

8

(
1
5 −

1
9

)
= π4

90 .
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Exercise 4. Consider the Hilbert space ℓ2(N,C). Fix N ∈ N and consider the map

h :

 ℓ2(N,C) → C

(an)n∈N 7→
∑N

n=0 an.

1. Prove that h is a bounded linear functional on ℓ2(N,C).

2. Prove that H := ker(h) is closed.

3. Prove that ℓ2(N,C) = H ⊕H⊥.

4. Compute H⊥.

5. Compute pH .

Solution of exercise 4. Please read subsection 3.1.1 of chapV of the lecture notes.

1. Recall/read Proposition 5.1 of chapV. |h((an)n∈N)| = |
∑N

i=0 ai | = |
∑N

i=0 1 · ai | ≤
√
N + 1∥(an)n∈N∥. (Cauchy-

Schwarz inequality applied to (1, · · · ,1,0, . . .) (1 at first N +1 places, 0 elsewhere) and (an)n∈N; (an)n∈N ∈ ℓ2

so ∥(an)n∈N∥ <∞).

2. For any {xn} ⊂H with xn→ x.
h(x) = lim

n→∞
h (xn) = 0

Thus x ∈H and the nullspace is closed.

3. For any x ∈ ℓ2(N,C), we decompose x as x =
(
x − h(x)

h(y0)y0

)
+

h(x)
h(y0)

y0, for any y0 <H . We see x− h(x)
h(y0)y0 ∈H

and
h(x)
h(y0)

y0 ∈ Span
{
y0

}
, thus ℓ2(N,C) = H

⊕
Span

{
y0

}
(this is true for any linear space). Pick up (wisely)

y0 = (bn)n∈N = (1, · · · ,1,0, . . .), for any (an)n∈N ∈ H , ⟨y0, (an)n∈N⟩ = ⟨(bn)n∈N, (an)n∈N⟩ = h((an)n∈N) = 0. We
have Span

{
y0

}
⊂H⊥, thus Span

{
y0

}
= H⊥. In general:

Theorem. Let E be a Hilbert space, Y a closed subspace of E,Y⊥ the orthogonal complement of Y .

(a) Y⊥ is a closed linear subspace of E;

(b) Y and Y⊥ are complementary subspaces, meaning that every x can be decomposed uniquely as a sum of a
vector in Y and in Y⊥;

(c)
(
Y⊥

)⊥
= Y .

4. Done.

5. For y0 = (1, · · · ,1,0, . . .), pH (x) = x − h(x)
h(y0)y0 = x − (

h(x)
N + 1

, . . . ,
h(x)
N + 1

,0, . . .).

Exercise 5. Fix N ∈ N. Consider the linear form h : ℓ2(N,C)→ C defined by

h
(
(an)n∈N

)
= aN .

1. Prove that h is continuous.
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2. Determine the unique element u ∈ ℓ2(N,C) such that

ℓ(v) = ⟨u,v⟩ ∀v ∈ ℓ2(N,C).

Solution of exercise 5.

1. Set u = (0, . . . ,0,1,0, . . .) (1 at N + 1-th place), |h
(
(an)n∈N

)
| = |⟨u, (an)n∈N⟩| ≤ ∥ (an)n∈N ∥ by Cauchy-Schwarz.

2. By Theorem 5.6, u is unique.

Exercise 6. Consider the C-vector space C ◦([0,1],C) endowed with the inner product ⟨,⟩ defined by

⟨f ,g⟩ :=
∫ 1

0
f (t)g(t)dt.

Consider the element ℓ ∈C ◦([0,1],C)∗ defined by

ℓ(f ) = f (0)

Prove that ℓ is not continuous.

Solution of exercise 6. Set H2 = Kerℓ. We have seen in 1.3.2 Second example that H2 ⊕H⊥2 , C 0([0,2π],C).
If ℓ is continuous, by the proof of exercise 4, we will have H2 ⊕H⊥2 = C 0([0,1],C). Contradiction! Or you
construct ...

Exercise 9. Consider the R-vector space C ◦([−1,1],R) endowed with the inner product ⟨,⟩ defined by

⟨f ,g⟩ :=
∫ 1

−1
f (t)g(t)dt.

For any k ∈ N set

Ln :=
1

2nn!

[(
x2 − 1

)n](n)
∈R[x].

This is the so-called n-th Legendre polynomial.

1. For any n ∈ N. Determine the leading coefficient of Ln.

2. Prove that the family (Ln)n∈N is an orthogonal family in C ◦([−1,1],R).

3. For any n ∈ N, compute ∥Ln∥.

4. Prove that if one applies the Gram-Schmidt process to the family (xn)n∈N, one obtains the family
(

Ln
∥Ln∥

)
n∈N
·

Solution of exercise 7.
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1. The leading coefficient is
(2n)!

2n(n!)2 of xn.

2. Show that if f is indefinitely differentiable on [−1,1], then∫ 1

−1
Ln(x)f (x)dx = (−1)n

1
2nn!

∫ 1

−1

(
x2 − 1

)n
f (n)(x)dx

(Integration by parts). In particular, Ln is orthogonal to xm whenever m < n. Hence {Ln}∞n=0 is an orthog-
onal family.

3.

∥Ln∥ = (−1)n
1

2nn!

∫ 1

−1

(
x2 − 1

)n
L

(n)
n (x)dx

= (−1)n
1

2nn!

∫ 1

−1

(
x2 − 1

)n d2n

dx2n

[(
x2 − 1

)n]
dx

= (−1)n
(2n)!

22n(n!)2

∫ 1

−1

(
x2 − 1

)n
dx

(3)

Using gamma functions or Integration by parts n time to find this equals
2

n+ 2
.

4. We can prove that any polynomial of degree n that is orthogonal to 1,x,x2, . . . ,xn−1 is a constant multiple
of Ln by comparing dimensions. Thus {Ln} is the family obtained by applying the Gram-Schmidt process
to 1,x,x2, . . . ,xn, . . ..
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